Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-2013
    Keywords: Sympathetic control ; Maxillary blood flow ; AVA-and tissue blood flow ; Face ; Nose
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Total blood flow and perfusion pressure (PP) of the internal maxillary artery (IMA) were recorded bilaterally during electrical stimulation (8 V, 2 ms) of the right cervical sympathetic nerve at frequencies (f) of 0.3, 0.5, 1.0 and 3.0 Hz in anesthetized, paralyzed and artificially ventilated dogs. Distribution of IMA-FLOW to precapillaries (CAP-FLOW) and arteriovenous anastomoses (AVA-FLOW) was determined by the tracer microspheres technique. During electrical stimulation (ES) IMA-FLOW was affected only unilaterally and decreased in a hyperbola-like fashion with the increase of f, while contralateral IMA-FLOW remained unchanged. Systemic blood pressure as well as PP of both IMA remained unchanged while heart rate was only increased during ES at maximal f. The reduction of IMA-FLOW was mainly due to marked vasoconstrictor responses of the AVAs, which were already attained at low f while significant vasoconstrictor responses of precapillaries occurred at higher f and were less pronounced. The early response of AVAs to increasing sympathetic activation enables IMA-FLOW to be adjusted in a physiological range of sympathetic activities, before CAP-FLOW is substantially reduced. The predominance of AVA-FLOW in blood flow control of the IMA was also supported by the conformity in their hyperbolic relationship with maxillary resistance at rest and during enhanced levels of sympathetic vasoconstrictor activity.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1435-8107
    Keywords: Abscission ; Bean petiole ; Cell wall polysaccharide ; Cellulose ; Jasmonate ; Phaseolus vulgaris
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Jasmonic acid (JA) and its methyl ester (JA-Me) promoted the abscission of bean petiole expiants in the dark and light, and the activity of these compounds was almost same. JA and JA-Me did not enhance ethylene production in bean petiole expiants in the light, indicating that the abscission-promoting effects of these compounds are not the result of ethylene. Cells in the petiole adjacent to the abscission zone expanded during abscission but not in the pulvinus, and JA-Me promoted cell expansion in the petiole and the pulvinus. JA-Me had no effect on the total amounts of pectic and hemicellulosic polysaccharides in 2-mm segments of the abscission region, which included 1 mm of pulvinus and 1 mm of petiole from the abscission zone. On the other hand, the total amounts of cellulosic polysaccharides in this region were reduced significantly by the addition of JA-Me in the light. JA-Me had no effect on the neutral sugar composition of hemicellulosic polysaccharides during abscission. The decrease in the endogenous levels of UDP-sugars in the petiole adjacent to the abscission zone was accelerated during abscission by the addition of JA-Me in the light. Cellulase activities of pulvinus and petiole in 10-day-old seedlings were enhanced by the addition of JA. These results suggest that the promoting effect of JA or JA-Me on the abscission of bean petiole explants is due to the change of sugar metabolism in the abscission zone, in which the increase in cellulase activity involves the degradation of cell wall polysaccharides. Jasmonic acid (JA) and its methyl ester (JA-Me) are considered to be putative plant hormones for a number of reasons, including their wide occurrence in the plant kingdom, biologic, activities in multiple aspects at low concentrations, and their interaction with other plant hormones (for reviews see Parthier 1991, Hamberg and Gardner 1992, Sembdner and Parthier 1993, Ueda et al. 1994a). We have already reported that JA and JA-Me and C18-unsaturated fatty acids, which are considered to be the substrates of the biosynthesis of jasmonates, are powerful senescence-promoting substances (Ueda et al. 1982b, 1991a). Senescence symptoms induced by these compounds are identical to those of natural senescence. Recently we have also found that JA inhibited indole-3-acetic acid (IAA)-induced elongation of oat (Avena sativa L. cv. Victory) coleoptile segments by inhibiting the synthesis of cell wall polysaccharides (Ueda et al. 1994b, 1995). These facts led us to study the mode of actions of JA and JA-Me on promoting abscission, which is considered the last dramatic phenomenon of senescence. In this paper we report that JA and JA-Me promote abscission in bean (Phaseolus vulgaris L. cv. Masterpiece) petiole expiants and that the changes in the metabolism of cell wall polysaccharides in the petiole and the pulvinus adjacent to the abscission zone are involved in the promotive effects of these compounds.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...