Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Mechanisms of Ageing and Development 74 (1994), S. 161-170 
    ISSN: 0047-6374
    Keywords: Aging ; Caenorhabditis elegans ; Fluorescent material ; Oxygen-sensitive mutant
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Medicine
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Mechanisms of Ageing and Development 70 (1993), S. 127-137 
    ISSN: 0047-6374
    Keywords: Aging ; Histone proteins ; Isoproterenol ; Non-histone proteins ; Phosphorylation ; Submandibular gland
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Medicine
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-0428
    Keywords: Troglitazone (CS-045) ; insulin secretion ; pancreatic islets ; HIT-T15 cells ; glucose transport ; sulphonylurea receptor ; ATP-sensitive K++ channel
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary In order to elucidate the direct effects of (±)-5-[4-(6-hydroxy-2, 5, 7, 8-tetramethylchroman-2-yl-methoxy) benzyl]-2,4-thiazolidinedione (Troglitazone), a newly-developed oral hypoglycaemic agent, on pancreatic beta-cell function, in vitro investigation of isolated rat pancreatic islets and a hamster beta-cell line (HIT cell) were performed. Troglitazone stimulates both glucose, and glibenclamide-induced insulin release at a concentration of 10−6 mol/l in these cells but, conversely, inhibits insulin secretion at 10−4 mol/l. Glucose uptake in HIT cells is similarly enhanced by 10−6 mol/l Troglitazone, but is reduced in the presence of 10−4 mol/l Troglitazone. However, a quantitative immunoblot analysis with a specific antibody for GLUT 2 glucose transporter revealed no significant change in GLUT 2 protein in HIT cells with 10−6 mol/l Troglitazone. Specific binding of [3H]-glibenclamide to beta-cell membranes is replaced by Troglitazone in a non-competitive manner, but 10−6 mol/l Troglitazone failed to eliminate ATP-sensitive K++ channel activity. These results suggest that Troglitazone has a putative non-competitive binding site at, or in the vicinity of, the sulphonylurea receptor in rat pancreatic islets and HIT cells and that the dual effect of Troglitazone on insulin secretory capacity is mediated through the modulation of glucose transport activity, possibly due to the modification of intrinsic activity in glucose transporter in pancreatic beta cells by this novel agent. [Diabetologia (1995) 38: 24–30]
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-0584
    Keywords: Aging ; Erythrocytes ; Platelet-activating factor ; Acyltransferases ; Membrane fluidity
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Platelet-activating factor acetylhydrolase is known to degrade oxidatively fragmented phospholipids which are similar in structure to platelet-activating factor. We examined changes of acetylhydrolase activity during in vivo aging of human erythrocytes and tried to assess its role in maintaining the membrane properties of erythrocytes. Higher-density erythrocytes are enriched with older cells. Erythrocytes obtained from seven healthy colleagues were separated into four density fractions by centrifugation in discontinuous Percoll density gradients. Both membrane and cytosolic acetylhydrolase decreased with increasing erythrocyte density. Membrane and cytosolic acetylhydrolase activities in the lightest fraction were 2.0±1.0 (SD) nkat/g protein and 362±58 pkat/g protein, respectivley, and these values were significantly higher than those in the densest fraction: 1.3±0.7 nkat/g protein and 286±70 pkat/g protein, respectively. Membrane acyltransferase activity also decreased with red cell density and the average values in the lightest and densest fractions were 51.2±23.6 and 27.0±20.2 μkat/g protein, respectively. Generation of thiobarbituric acid-reactive substances induced byt-butyl hydroperoxide treatment decreased with increasing cell density, and the inhibition of acetylhydrolase with diisopropylfluorophosphate resulted in enhanced peroxide-induced lipid oxidation, particularly in lower-density fractions. There was no significant change in basal levels of thiobarbituric acid-reactive substances in red cell membrane. Membrane fluidity was evaluated by fluorescence recovery after photobleaching and it decreased as erythrocyte density increased. We conclude that the activity of the deacylation/reacylation cycle maintained by acetylhydrolase and acyltransferase is gradually reduced during in vivo aging of erythrocytes. This may be connected with decreases of polyunsaturated fatty acids and membrane fluidity in old eryhtrocytes.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-0428
    Keywords: Key words Troglitazone (CS-045) ; insulin secretion ; pancreatic islets ; HIT-T15 cells ; glucose transport ; sulphonylurea receptor ; ATP-sensitive K++ channel.
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary In order to elucidate the direct effects of (±)-5-[4-(6-hydroxy-2, 5, 7, 8-tetramethylchroman-2-yl-methoxy) benzyl]-2,4-thiazolidinedione (Troglitazone), a newly-developed oral hypoglycaemic agent, on pancreatic beta-cell function, in vitro investigation of isolated rat pancreatic islets and a hamster beta-cell line (HIT cell) were performed. Troglitazone stimulates both glucose, and glibenclamide-induced insulin release at a concentration of 10−6 mol/l in these cells but, conversely, inhibits insulin secretion at 10−4 mol/l. Glucose uptake in HIT cells is similarly enhanced by 10−6 mol/l Troglitazone, but is reduced in the presence of 10−4 mol/l Troglitazone. However, a quantitative immunoblot analysis with a specific antibody for GLUT 2 glucose transporter revealed no significant change in GLUT 2 protein in HIT cells with 10−6 mol/l Troglitazone. Specific binding of [3H]-glibenclamide to beta-cell membranes is replaced by Troglitazone in a non-competitive manner, but 10−6 mol/l Troglitazone failed to eliminate ATP-sensitive K++ channel activity. These results suggest that Troglitazone has a putative non-competitive binding site at, or in the vicinity of, the sulphonylurea receptor in rat pancreatic islets and HIT cells and that the dual effect of Troglitazone on insulin secretory capacity is mediated through the modulation of glucose transport activity, possibly due to the modification of intrinsic activity in glucose transporter in pancreatic beta cells by this novel agent. [Diabetologia (1995) 38: 24–30]
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...