Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 171 (1999), S. 417-423 
    ISSN: 1432-072X
    Keywords: Key words Alanine dehydrogenase ; Ammonia ; assimilation ; Mycobacterium ; Morpholine degradation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract An NAD-dependent, morpholine-stimulated l-alanine dehydrogenase activity was detected in crude extracts from morpholine-, pyrrolidine-, and piperidine-grown cells of Mycobacterium strain HE5. Addition of morpholine to the assay mixture resulted in an up to 4.6-fold increase of l-alanine dehydrogenase activity when l-alanine was supplied at suboptimal concentration. l-Alanine dehydrogenase was purified to near homogeneity using a four-step purification procedure. The native enzyme had a molecular mass of 160 kDa and contained one type of subunit with a molecular mass of 41 kDa, indicating a tetrameric structure. The sequence of 30 N-terminal amino acids was determined and showed a similarity of up to 81% to that of various alanine dehydrogenases. The pH optimum for the oxidative deamination of l-alanine, the only amino acid converted by the enzyme, was determined to be pH 10.1, and apparent K m values for l-alanine and NAD were 1.0 and 0.2 mM, respectively. K m values of 0.6, 0.02, and 72 mM for pyruvate, NADH, and NH4 +, respectively, were estimated at pH 8.7 for the reductive amination reaction.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 134 (1983), S. 167-169 
    ISSN: 1432-072X
    Keywords: Nitrogenase ; Glutamine synthetase ; Glutamate synthase ; Glutamate dehydrogenase ; Asparagine synthetase ; Alanine dehydrogenase ; β-Methylaspartase ; Clostridium formicoaceticum
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Clostridium formicoaceticum possesses the following enzymes for the assimilation of N2 and NH 4 + : nitrogenase, glutamine synthetase, NADH- and NADPH-dependent glutamate synthase, NADH- and NADPH-dependent glutamate dehydrogenase, NADPH-dependent alamine dehydrogenase, and NH 4 + -dependent asparagine synthetase. Nitrogenase and glutamine synthetase are repressed and alanine dehydrogenase is induced by NH 4 + , while the synthesis of the other enzymes is not influenced by the extracellular NH 4 + level. Glutamate is degraded via glutamate mutase and β-methylaspartase.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...