Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-1424
    Keywords: Cortical collecting duct ; Flufenamic acid ; Amiloride ; Adenine nucleotides ; cGMP dependent protein kinase ; Patch clamp
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract We recently reported that M-1 mouse cortical collecting duct cells show nonselective cation (NSC) channel activity (Proc. Natl. Acad. Sci. USA 89:10262–10266, 1992). In this study, we further characterize the M-1 NSC channel using single-channel current recordings in excised inside-out patches. The M-1 NSC channel does not discriminate between Na+, K+, Rb+, Cs+, and Li+. It has a linear I-V relation with a conductance of 22.7±0.5 pS (n=78) at room temperature. The Pcation/ Panion ratio is about 60 and there is no measurable conductance for NMDG, Ca2+, Ba2+, and Mn2+. Cytoplasmic calcium activates the M-1 NSC channel at a threshold of 10−6 m and depolarization increases channel activity (NP o ). Cytoplasmic application of adenine nucleotides inhibits the M-1 NSC channel. At doses of 10−4 m and 10−3 m, ATP reduces NP o by 23% and 69%, respectively. Furthermore, since ADP (10−3 m) reduces NP o by 93%, the inhibitory effect of adenine nucleotides is not dependent on the presence of a γ-phosphoryl group and therefore does not involve protein phosphorylation. The channel is not significantly affected by 8-Br-cGMP (10−4 m) or by cGMP-dependent protein kinase (10−7 m) in the presence of 8-Br-cGMP (10−5 m) and ATP (10−4 m). The NSC channel is not sensitive to amiloride (10−4 m cytoplasmic and/or extracellular) but flufenamic acid (10−4 m) produces a voltage-dependent block, reducing NP o by 35% at depolarizing voltages and by 80% at hyperpolarizing voltages. We conclude that the NSC channel of M-1 mouse cortical collecting duct cells belongs to an emerging family of calcium-activated and nucleotide-sensitive nonselective cation channels. It does not contribute to amiloride-sensitive sodium absorption and is unlikely to be a major route for calcium entry. The channel is normally quiescent but may be activated under special physiological conditions, e.g., during volume regulation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    European journal of pediatrics 152 (1993), S. 896-899 
    ISSN: 1432-1076
    Keywords: Neutrophil ; Inflammation ; Immunodeficiency ; Granuloma ; Chronic granulomatous disease ; Infection ; Antibiotics ; Interferon ; Therapy
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Chronic granulomatous disease (CGD) is a primary immunodeficiency disease which results from absence of the NADPH oxidase in the professional phagocytic cells [13] neutrophils, monocytes, macrophages and eosinophils. Deficiency of this oxidase renders the patient liable to infection by bacteria and fungi, and, as the name of the disease suggests, to chronic granulomatous inflammation. These patients present with a great variety of infections and other complications of their disease, which often tax the clinical and therapeutic skill of the doctors responsible for their care. Collectively we look after, or advise on the management of, over 100 of these subjects, and have developed experience in the diagnosis and management of the infections and other clinical problems they present. We thought that it might be timely to provide guidelines for their management based upon this experience. The numbers of patients are still relatively small, and the clinical presentations very varied, so it is immpossible to provide clear statistical proof of the veracity of this advice. It does, however, reflect the working practise of the physicians caring for many of these patients in Europe.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...