Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 46 (1982), S. 292-300 
    ISSN: 1432-1106
    Keywords: Ventromedial nucleus ; Hypothalamus ; Antidromic activation ; Central gray ; Midbrain ; Amygdala
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary In female rats anesthetized with urethane, 151 neurons in and around the ventromedial nucleus of the hypothalamus were identified by antidromic activation as having axonal projection to the mesencephalic central gray at the midcollicular level. Identified neurons were most numerous in the rostral part and at the borders of the nucleus. Antidromic spike latencies, constant for a given cell to stimulation with fixed intensity at a low repetition rate, had a wide range across cells (1.4–41.5 ms). In 37 cells, gradual increases in stimulus intensity allowed sudden discrete latency decreases as large as 9.8 ms. These may reflect activation of separate axonal branches of terminal arborizations. Eleven among 43 tested cells were antidromically driven from the dorsal longitudinal fasciculus (DLF) at the diencephalic-mesencephalic junction as well as from the central gray. Latencies of DLF responses were always shorter than those from central gray. From this and collision experiments between central gray-evoked and DLF-evoked antidromic spikes, it was concluded that at least one quarter of mesencephalic projections from the ventromedial nucleus descend through DLF. The mean conduction velocity of these axons was 0.8 m/s, indicating that they belong to thin unmyelinated C-group fibers. Thirty percent of the cell population studied received excitatory input from the cortical or medial nucleus of the amygdala. Four cells were identified as having projections both to the central gray and the amygdala. Estrogen treatment of ovariectomized female rats caused no major changes in antidromic latency, absolute refractory period or resting activity of these identified hypothalamic neurons. However, the stimulation threshold for antidromic activation was significantly lower in the estrogen-treated animals. Axons to the central gray from ventromedial hypothalamic neurons provide for hypothalamic bias on brain stem reflex paths, for reproductive and other behaviors.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-1106
    Keywords: Antidromic activation ; Latency variation ; Axonal excitability ; Paraventricular nucleus ; Rat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Magnocellular neurosecretory cells were antidromically identified in the hypothalamic paraventricular nucleus (PVN) of urethane-anesthetized, ovariectomized female rats following electrical stimulation of the neurohypophysis. Seventy-one cells with a tonic pattern of spontaneous discharge were distinguished and used to examine the relationships between the measures of antidromic spike latency, activation threshold and discharge rate. The discharge rate was artificially modulated by either microiontophoresis of glutamate or antidromic stimulation of the neurohypophysis. In all the PVN cells with tonic activity, the latency lengthened and the threshold increased as a function of the discharge rate. Activation of individual cells by microiontophoresis of glutamate was effective, as was simultaneous activation of many PVN cells by antidromic stimulus. Similar relationships between the discharge rate and the parameters of antidromic activation were seen in 3 cells, when their rates varied spontaneously over a wide range without manipulation. These data suggest that the excitability of axons of presumed oxytocinergic cells in the PVN-neurohypophyseal system are influenced by their prior activity, probably through metabolic changes in individual axons.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...