Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-072X
    Keywords: Archaea ; Methanogenic bacteria ; Hyperthermophiles ; Sulfate reducers ; Methanobacterium thermoautotrophicum ; Methanosarcina barkeri ; Tetrahydromethanopterin
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Archaeoglobus fulgidus and Methanopyrus kandleri are both extremely thermophilic Archaea with a growth temperature optimum at 83°C and 98°C, respectively. Both Archaea contain an active N 5,N 10-methenyltetrahydromethanopterin cyclohydrolase. The enzyme from M. kandleri has recently been characterized. We describe here the purification and properties of the enzyme from A. fulgidus. The cyclohydrolase from A. fulgidus was purified 180-fold to apparent homogeneity and its properties were compared with those recently published for the cyclohydrolase from M. kandleri. The two cytoplasmic enzymes were found to have very similar molecular and catalytic properties. They differed, however, significantly with respect of the effect of K2HPO4 and of other salts on the activity and the stability. The cyclohydrolase from A. fulgidus required relatively high concentrations of K2HPO4 (1 M) for optimal thermostability at 90°C but did not require salts for activity. Vice versa, the enzyme from M. kandleri was dependent on high K2HPO4 concentrations (1.5 M) for optimal activity but not for thermostability. Thus the activity and structural stability of the two thermophilic enzymes depend in a completely different way on the concentration of inorganic salts. The molecular basis for these differences are discussed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-072X
    Keywords: Archaea ; Methanogens ; Sulfate reducers ; Tetrahydromethanopterin ; Methanofuran ; Coenzyme F420 ; C1-Enzymes
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The sulfate-reducing Archaeoglobus fulgidus contains a number of enzymes previously thought to be unique for methanogenic Archaea. The purification and properties of two of these enzymes, of formylmethanofuran: tetrahydromethanopterin formyltransferase and of N 5,N 10-methylenetetrahydromethanopterin dehydrogenase (coenzyme F420 dependent) are described here. A comparison of the N-terminal amino acid sequences and of other molecular properties with those of the respective enzymes from three methanogenic Archaea revealed a high degree of similarity.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-072X
    Keywords: Key words [NiFe] Hydrogenases ; Methanococcus ; voltae ; Archaea ; Selenocysteine ; Selenium-dependent ; gene regulation ; Operator ; Silencer ; EPR
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Methanococcus voltae carries genetic information for four [NiFe] hydrogenases. Two of the hydrogenases are predicted to contain selenocysteine on the basis of in-frame TGA codons, while the genes encoding the two other enzymes contain cysteine codons at homologous positions. Their predicted subunit compositions and their electron acceptor specificities are similar to those of the respective selenium-containing enzymes. The selenium-containing hydrogenases have been purified and characterized. Only one of them reduces the deazaflavin F420. The activity of the F420-nonreducing enzyme is exceptionally high. The selenium atom has been shown by EPR spectroscopy to be a ligand to the Ni atom in the primary reaction centers in both enzymes. The spectroscopic analyses also yielded a description of the electronic configuration around the NiFe center at different oxidation states and in the presence of the competitive inhibitor, CO. The genes encoding the selenium-free hydrogenases are expressed only in the absence of selenium. They are linked by an intergenic region in which regulatory cis elements were defined by employing reporter gene constructs and site-directed mutagenesis.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...