Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-072X
    Keywords: Key words Slime moulds ; Physarum polycephalum ; Plasmodium development ; Differential gene expression ; Myosin ; Calcium-binding protein
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract During the life cycle of Physarum polycephalum, uninucleate amoebae develop into multinucleate syncytial plasmodia. These two cell types differ greatly in cellular organisation, behaviour and gene expression. Classical genetic analysis has identified the mating-type gene, matA, as the key gene controlling the initiation of plasmodium development, but nothing is known about the molecular events controlled by matA. In order to identify genes involved in regulating plasmodium formation, we constructed a subtracted cDNA library from cells undergoing development. Three genes that have their highest levels of expression during plasmodium development were identified: redA, redB (regulated in development) and mynD (myosin). Both redA and redB are single-copy genes and are not members of gene families. Although redA has no significant sequence similarities to known genes, redB has sequence similarity to invertebrate sarcoplasmic calcium-binding proteins. The mynD gene is closely related to type II myosin heavy-chain genes from many organisms and is one of a family of type II myosin genes in P. polycephalum. Our results indicate that many more red genes remain to be identified, some of which may play key roles in controlling plasmodium formation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-2242
    Keywords: Microspores ; Haploid ; Pursuit ; Assert ; Tolerance
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary In vitro microspore mutagenesis and selection was used to produce five fertile double-haploid imidazolinone-tolerant canola plants. The S2 plants of three of the mutants were resistant to at least the field-recommended levels of Assert and Pursuit. One mutant was tolerant to between five and ten times the field-recommended rates of Pursuit and Scepter. Two semi-dominant mutants, representing two unlinked genes, were combined to produce an F1 hybrid which was superior in imidazolinone tolerance to either of the heterozygous mutants alone. Evaluation of the mutants under field conditions indicated that this hybrid and the original homozygous mutants could tolerate at least two times the field-recommended rates of Assert. The field results indicated the mutants were unaffected in seed yield, maturity, quality and disease tolerance. These genes represent a potentially valuable new herbicide resistance system for canola, which has little effect on yield, quality or maturity. The mutants could be used to provide tolerance to several imidazolinones including Scepter, Pursuit and Assert.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...