Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0568
    Keywords: Autonomic nervous system ; Adrenergic nerves ; Chromaffin cells ; Pelvic viscera
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The organs of the lower abdominal and pelvic regions of the guinea-pig receive nerves from the inferior mesenteric ganglia and pelvic plexuses. The inferior mesenteric ganglia connect with the sympathetic chains, the superior mesenteric ganglia, the pelvic plexuses via the hypogastric nerves, and with the gut. Each pelvic plexus consists of anterior and posterior parts which send filaments to the internal generative organs and to the rectum, internal anal sphincter and other pelvic organs. The pelvic nerves enter the posterior plexuses, which also receive rami from the sacral sympathetic chains. The adrenergic neurons of the pelvic plexuses are monopolar, do not have dendrites and are supplied by few varicose adrenergic axons. Nearly all the nerves contain adrenergic fibres. After exposure to formaldehyde vapour the chromaffin cells appear brightly fluorescent with one or two long, often varicose, processes. Most of the chromaffin cells are in Zuckerkandl's organ or in chromaffin bodies associated with the inferior mesenteric ganglia. Groups of chromaffin cells are found along the hypogastric nerves and in the pelvic plexuses; they become smaller and fewer as regions more posterior to Zuckerkandl's organ are approached.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Anatomy and embryology 140 (1973), S. 109-128 
    ISSN: 1432-0568
    Keywords: Autonomic nervous system ; Gastrointestinal tract ; Adrenergic nerves ; Anal sphincter
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The anatomy and the adrenergic innervation of the rectum, internal anal sphincter and of accessory structures are described for the guinea-pig. The distribution of adrenergic nerves was examined using the fluorescence histochemical technique applied to both sections and whole mount preparations. The longitudinal and circular muscle of the rectum and the muscularis mucosae are all supplied by adrenergic nerve terminals. The density of the adrenergic innervation of the muscularis externa increases towards the anal sphincter. There is a very dense innervation of the internal anal sphincter, of the anal accessory muscles and of the corrugator ani. Non-fluorescent neurons in the ganglia of the myenteric plexus are supplied by adrenergic terminals. The ganglia become smaller and sparser towards the internal anal sphincter and non-ganglionated nerve strands containing adrenergic axons run from the plexus to the sphincter muscle. Adrenergic fibers innervate two interconnected ganglionated plexuses in the submucosa. Very few adrenergic nerve cells were found in the myenteric plexus and they were not found at all in the submucosa. The extrinsic arteries and veins of the pelvic region are heavily innervated by adrenergic nerves. Within the gut wall the arteries are densely innervated but there is little or no innervation of the veins.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-0568
    Keywords: Autonomic nervous system ; Adrenergic nerves ; Pelvic viscera ; Gastrointestinal tract
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The adrenergic innervation of the pelvic viscera was examined by the fluorescence histochemical technique, applied to tissue from untreated guinea-pigs and from guinea-pigs in which nerve pathways had been interrupted at operation. It was found that adrenergic neurons in the inferior mesenteric ganglia give rise to axons which run in the colonic nerves and end in the myenteric and submucous plexuses and around the arteries of the distal colon. In the rectum, part of the innervation of the myenteric plexus and all of the innervation of the submucous plexus comes from the inferior mesenteric ganglia. The rest of the adrenergic innervation of the myenteric plexus comes from the posterior pelvic ganglia or the sacral sympathetic chains. The innervation of the blood vessels of the rectum is from the posterior pelvic ganglia. Adrenergic nerves run from the sacral sympathetic chains and pass via nerves accompanying the rectal arteries to the internal anal sphincter. Other adrenergic fibres to the internal anal sphincter either arise in, or pass through, the posterior pelvic plexuses. The anal accessory muscle is innervated by adrenergic axons arising in the posterior pelvic plexuses. Adrenergic nerves which run in the pudendal nerves, probably from the sacral sympathetic chains, innervate the erectile tissue of the penis.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Naunyn-Schmiedeberg's archives of pharmacology 307 (1979), S. 57-63 
    ISSN: 1432-1912
    Keywords: Substance P ; Intestine ; Autonomic nervous system ; Peptidergic nerves
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Acid extracts from both normal and extrinsically denervated ileum contained a compound which was indistinguishable from synthetic substance P; this compound was assayed by examining its contractile effect on the longitudinal muscle of segments of ileum in which receptors for acetylcholine and histamine were blocked. Contractions caused by the compound were markedly and selectively antagonized when the ileum was made insensitive to the action of substance P. The activities in the extract and of synthetic substance P were both destroyed by chymotrypsin but were not affected by trypsin or carboxypeptidase B. The concentrations of substance P-like material in normal and extrinsically denervated segments were not significantly different, being equivalent to 0.48 μg of substance P per g of external muscle plus myenteric plexus. A compound with substance P-like activity was liberated by stimulation of intramural nerves, either electrically or by dimethylphenylpiperazinium, in both normal and extrinsically denervated segments of ileum. The release of this compound was prevented by tetrodotoxin and its action on the muscle was blocked when the ileum was made insensitive to the action of substance P. Experiments with transmural stimulation showed that excitatory nerve pathways involving substance P neurons extend for less than 4 cm along the intestine.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Naunyn-Schmiedeberg's archives of pharmacology 328 (1985), S. 446-453 
    ISSN: 1432-1912
    Keywords: Substance P ; Enteric neurons ; Autonomic nervous system
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The sites of action and possible roles of substance P in contracting the circular muscle of the guinea-pig ileum were studied using two analogues of substance P that act as antagonists of some of its actions. These ared-Arg1,d-Pro2,d-Trp7,9, Leu11-substance P andd-Pro2,d-Trp7,9-substance P, referred to by the single letter amino acid codes for the substituting amino acids as (RPWWL)-SP and (PWW)-SP, respectively. Records of circular muscle activity were taken from strips of intestine free of mucosa and submucosa and from rings with all layers of intestine intact. Substance P was equally effective in contracting the circular muscle strips as it was in contracting the longitudinal muscle. The contractions of strips were not blocked by hyoscine (2×10−6 M) or tetrodotoxin (6×10−7 M), but were substantially reduced by (RPWWL)-SP (6.7×10−6 M) or (PWW)-SP (2×10−5 M). In contrast, contractions of the circular muscle of whole rings of intestine elicited by low concentrations of substance P (4×10−7M) were blocked by hyoscine or tetrodotoxin but notreduced by the substance P antagonists in the concentrations referred to above. These observations indicate that the antagonists are effective at receptors for substance P on the muscle, but not at substance P receptors on enteric cholinergic nerves. Transmural stimulation of strips of circular muscle or of intestinal rings in the presence of hyoscine evoked contractions that were blocked by tetrodotoxin. These hyoscineresistant, nerve-mediated contractions could be elicited by single pulses in the strips. The contractions were reduced to less than 20% of original amplitude by (RPWWL)-SP (6.7×10−6M). Reflex contractions of the circular muscle recorded on the oral side of a distension stimulus had a low-threshold, hyoscine-sensitive and a high-threshold, hyoscine-insensitive, component. The low threshold component was unaffected by the substance P antagonists whereas the high threshold component was depressed. It is concluded that substance P nerves are effective in transmitting to the circular muscle, that they are final nerves in non-cholinergic excitatory reflexes, and that the substance P antagonist analogues can be used to distinguish actions of substance P at neural and muscle receptors.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1432-0878
    Keywords: Calbindin ; Enteric nervous system ; Intestine, small ; Sensory neurons ; Guinea-pig
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary The distribution of nerve cells with immunoreactivity for the calcium-binding protein, calbindin, has been studied in the small intestine of the guinea-pig, and the projections of these neurons have been analysed by tracing their processes and by examining the consequences of nerve lesions. The immunoreactive neurons were numerous in the myenteric ganglia; there were 3500±100 reactive nerve cells per cm2 of undistended intestine, which is 30% of all nerve cells. In contrast, reactive nerve cells were extremely rare in submucous ganglia. The myenteric nerve cells were oval in outline and gave rise to several long processes; this morphology corresponds to Dogiel's type-II classification. Processes from the cell bodies were traced through the circular muscle in perforating nerve fibre bundles. Other processes ran circumferentially in the myenteric plexus. Removal of the myenteric plexus, allowing time for subsequent fibre degeneration, showed that reactive nerve fibres in the submucous ganglia and mucosa came from the myenteric cell bodies. Operations to sever longitudinal or circumferential pathways in the myenteric plexus indicated that most reactive nerve terminals in myenteric ganglia arise from myenteric cell bodies whose processes run circumferentially for 1.5 mm, on average. It is deduced that the calbindin-reactive neurons are multipolar sensory neurons, with the sensitive processes in the mucosa and with other processes innervating neurons of the myenteric plexus.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Cell & tissue research 271 (1993), S. 333-339 
    ISSN: 1432-0878
    Keywords: Enteric nervous system ; Prevertebral ganglia ; Retrograde tracing ; Calbindin ; Vasoactive intestinal peptide (VIP) ; Intestine ; Guinea-pig
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract Retrograde tracing, using Fast Blue dye, was employed to determine the distribution of enteric nerve cells that project to the superior mesenteric and inferior mesenteric ganglia of the guinea-pig. Retrogradely labelled neurons were found in the myenteric but not submucous ganglia. When the superior mesenteric ganglion was injected, labelled neurons were found in low frequencies (less than 5 nerve cell bodies/cm2) in the duodenum, jejunum, ileum, caecum and proximal colon. The distal colon was analysed in five segments of equal length (1–5; oral to anal). Segment 1 had about 4 labelled nerve cells/cm2, whereas segments 2 to 5 displayed an average of about 25 nerve cells/cm2. The rectum contained about 36 labelled neurons/cm2. After injection of the inferior mesenteric ganglia with Fast Blue, no labelled neurons were found in the duodenum, jejunum, ileum or caecum. No labelled cells were observed in the gallbladder. A small number of labelled cells occurred in the proximal colon and in segment 1 of the distal colon. The frequency of labelled cells increased markedly in the more anal regions of the distal colon, and reached a peak in the rectum (138 cells/cm2). Both nerve lesions and immersion of the cut nerve in Fast Blue solution showed that the superior mesenteric nerve carries the axons of neurons located in the middle distal colon to the superior mesenteric ganglion. Almost half of the neurons in the rectum that project to the inferior mesenteric ganglia do so via the hypogastric nerves. Of neurons that projected to the inferior or superior mesenteric ganglia from the colon or rectum, similar proportions (about 75–80%) showed immunoreactivity for calbindin or VIP. For each of the prevertebral ganglia (coeliac, superior mesenteric and inferior mesenteric) the great majority of peripheral inputs arise from the large intestine.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Cell & tissue research 280 (1995), S. 549-560 
    ISSN: 1432-0878
    Keywords: Enteric nervous system ; Immunocytochemistry ; Calretinin ; Calbindin ; Bombesin ; Small intestine ; Guinea-pig
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract Light- and electron-microscopic studies were used to investigate connections between specific subgroups of neurons in the myenteric plexus of the guineapig small intestine. Inputs to two classes of calretinin-immunoreactive (IR) nerve cells, longitudinal muscle motor neurons and ascending interneurons, were examined. Inputs from calbindin-IR primary sensory neurons and from three classes of descending interneurons were studied. Electron-microscopic analysis showed that calbindin-IR axons formed two types of inputs, synapses and close contacts, on calretinin-IR neurons. About 40% of inputs to the longitudinal muscle motor neurons and 70% to ascending interneurons were calbindin-IR. Approximately 50% of longitudinal muscle motor neurons were surrounded by bombesin-IR dense pericellular baskets and 40% by closely apposed varicosities. At the electron-microscope level, the bombesin-IR varicosities were found to form synapses and close contacts with the motor neurons. Dense pericellular baskets with bombesin-IR surrounded 36% of all ascending interneurons, and a further 17% had closely apposed varicosities. Somatostatin-and 5-HT-IR descending interneurons provided no dense pericellular baskets to calretinin-IR nerve cells. Thus, calretinin-IR, longitudinal muscle motor neurons and ascending interneurons receive direct synaptic inputs from intrinsic primary sensory neurons and from non-cholinergic, bombesin-IR, descending interneurons.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Springer
    Cell & tissue research 269 (1992), S. 119-132 
    ISSN: 1432-0878
    Keywords: Enteric nervous system ; Coeliac ganglion ; Retrograde tracing ; Calbindin ; Vasoactive intestinal peptide ; Guinea-pig
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary The digestive tract of the guinea-pig, from the esophagus to the rectum, was examined in detail to determine the distribution and relative abundances of neurons in these organs that project to the coeliac ganglion and the routes by which their axons reach the ganglion. A retrogradely transported neuronal marker, Fast Blue, was injected into the coeliac ganglion. The esophagus, stomach, gallbladder, pancreas, duodenum, small intestine, caecum, proximal colon, distal colon and rectum were analysed for labelled neurons. Retrogradely labelled neurons were found only in the myenteric plexus of these organs, and in the pancreas. No labelled neurons were found in the gallbladder or the fundus of the stomach, or in the submucous plexus of any region. A small number of labelled neurons was found in the gastric antrum. An increasing density of labelled neurons was found along the duodenum. Similarly, an increasing density of labelled neurons was found from proximal to distal along the jejuno-ileum. However, the greates densities of labelled neurons were in the large intestine. many labelled neurons were found in the caecum, including a high density underneath its taeniae. An increasing density of labelled neurons was found along the length of the proximal colon, and labelled neurons were found in the distal colon and rectum. In total, more labelled cell bodies occurred in the large intestine than in the small intestine. The routes taken by the axons of viscerofugal neurons were ascertained by lesioning the nerve bundles which accompany vessels supplying regions of the digestive tract. Viscerofugal neurons of the caecum project to the coeliac ganglion via the ileocaeco-colic nerves; neurons in the proximal colon project to the ganglion via the right colic nerves, and neurons in the distal colon project to the ganglion via the mid colic and intermesenteric nerves. Neurons in the rectum project to the coeliac ganglion via the intermesenteric nerves. These nerves (except for the intermesenterics) all join nerve bundles from the small intestine that follow the superior mesenteric artery. All viscerofugal neurons of the caecum were calbindin-immunoreactive (calb-IR) and 94% were immunoreactive for vasoactive intestinal peptide (VIP-IR). In the proximal colon, 49% of labelled neurons were calb-IR and 85% were VIP-IR. In the distal colon, 80% of labelled neurons were calb-IR and 71% were VIP-IR.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Springer
    Cell & tissue research 280 (1995), S. 549-560 
    ISSN: 1432-0878
    Keywords: Key words: Enteric nervous system ; Immunocytochemistry ; Calretinin ; Calbindin ; Bombesin ; Small intestine ; Guinea-pig
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract. Light- and electron-microscopic studies were used to investigate connections between specific subgroups of neurons in the myenteric plexus of the guinea-pig small intestine. Inputs to two classes of calretinin-immunoreactive (IR) nerve cells, longitudinal muscle motor neurons and ascending interneurons, were examined. Inputs from calbindin-IR primary sensory neurons and from three classes of descending interneurons were studied. Electron-microscopic analysis showed that calbindin-IR axons formed two types of inputs, synapses and close contacts, on calretinin-IR neurons. About 40% of inputs to the longitudinal muscle motor neurons and 70% to ascending interneurons were calbindin-IR. Approximately 50% of longitudinal muscle motor neurons were surrounded by bombesin-IR dense pericellular baskets and 40% by closely apposed varicosities. At the electron-microscope level, the bombesin-IR varicosities were found to form synapses and close contacts with the motor neurons. Dense pericellular baskets with bombesin-IR surrounded 36% of all ascending interneurons, and a further 17% had closely apposed varicosities. Somatostatin- and 5-HT-IR descending interneurons provided no dense pericellular baskets to calretinin-IR nerve cells. Thus, calretinin-IR, longitudinal muscle motor neurons and ascending interneurons receive direct synaptic inputs from intrinsic primary sensory neurons and from non-cholinergic, bombesin-IR, descending interneurons.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...