Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1985-1989  (3)
  • radiation damage  (2)
  • Axonal branching  (1)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Journal of fusion energy 4 (1985), S. 323-338 
    ISSN: 1572-9591
    Keywords: heavy ion beam ; HIBLIC ; target ; reactor chamber ; beam port ; Monte Carlo method ; activity ; tritium breeding ; energy multiplication ; radiation damage
    Source: Springer Online Journal Archives 1860-2000
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Notes: Abstract A nuclear analysis was carried out for a heavy ion-beam fusion reactor, HIBLIC. The analysis includes the target and chamber neutronics, time-dependent radiation damage in the first wall, and radiation streaming through beam ports. It is found that the reactor chamber is characterized by its high tritium breeding ratio, low radiation damage in the second wall, and low induced activity. To reduce the radiation damage in the superconducting, focusing magnets, tapering the beam ports along the direct line-of-sight component of the source neutron is necessary in the magnet regions and also in the collimator region.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-1106
    Keywords: Axonal branching ; Vestibulo-ocular ; Vestibulo-collic ; Neck motoneurons ; Cat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Unit activities of 148 secondary vestibular neurons related to the posterior semicircular canal were recorded extracellularly in anesthetized cats. Axonal projections of these neurons were examined by their antidromic responses to stimulation of the excitatory target motoneurons of the contralateral (c-) inferior rectus muscle (IR) and bilateral (bi-) motoneuron pools of longus capitis muscles, neck flexors, in the C1 segment (C1LC). The neurons were classified into 4 groups according to their axonal projections. The first group of neurons, termed vestibulo-oculo-collic (VOC) neurons, sent axon collaterals both to the c-IR motoneuron pool and to the c-C1LC motoneuron pool. The majority of them (72%) were located in the descending nucleus. The second group of neurons were termed vestibuloocular (VO) neurons and sent their axons to the c-IR motoneuron pool but not to the cervical cord. Most of them (86%) were located in the medial nucleus. The third group of neurons, termed vestibulo-collic (contralateral) (VCc) neurons, sent axons to the cC 1LC motoneuron pool via the contralateral ventral funiculus but not to the oculomotor nuclei. They were mostly (75%) found in the descending nucleus. The last group of neurons were vestibulo-collic (ipsilateral) (VCi) neurons, which gave off axons to the ipsilateral (i-) C1LC motoneuron pool via the ipsilateral ventral funiculus but not to the oculomotor nuclei. One of them also sent an axon collateral to the c-C1LC motoneuron pool. The majority of them (74%) were located in the ventral part of the lateral nucleus. It was also observed in some of the VOC and VCi neurons that they produced unitary EPSPs in the c-C1LC and i-C1LC motoneurons, respectively. Their synaptic sites were estimated to be on the cell somata and/or proximal dendrites of the motoneurons.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Journal of fusion energy 4 (1985), S. 289-314 
    ISSN: 1572-9591
    Keywords: SENRI-I ; pellet ; blanket ; tritium breeding ratio ; energy deposition ; radiation damage ; activity ; streaming
    Source: Springer Online Journal Archives 1860-2000
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Notes: Abstract A neutronic analysis of the laser-driven inertial-confinement fusion reactor SENRI-I is presented. Three-dimensional Monte Carlo calculations were performed to examine the effects of laser beam ports on the flux distribution, tritium breeding ratio, thermal energy deposition in the blanket, and radiation streaming. A Monte Carlo code was also used for the time-dependent radiation-damage analysis accounting for the time of the flight spread of neutrons and the results are compared to the analysis for the HIBALL design. Induced radioactivity was estimated, based on the one-dimensional transport calculation and depletion analysis. The calculated results reveal the advantages of the SENRI-I design with a thick Li layer compared to other reactor systems employing a dry-wall scheme.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...