Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Theoretical and applied genetics 100 (2000), S. 810-819 
    ISSN: 1432-2242
    Keywords: Key words Bacterial soft rot ; Disease resistance ; Chinese cabbage ; Protoplast fusion ; Brassica rapa ; B. oleracea ; B. napus ; Erwinia carotovora subsp. carotovora
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract  Erwinia soft rot is a destructive disease of Brassica rapa vegetables. Reliable sources of resistance and control methods are limited, so development of highly resistant breeding lines is desirable. Protoplasts from B. rapa and B. oleracea genotypes selected for resistance to soft rot were fused in order to combine different sources of resistance. Twelve somatic hybrids (synthetic B. napus) were obtained and confirmed by morphology, nuclear DNA content, and RAPD analysis. They were normal looking plants that easily set seeds following self-pollination and backcrossing to B. rapa. Assays of detached leaves or seedlings inoculated in a mist-chamber showed that most somatic hybrids had lower disease severity ratings than the B. rapa fusion partner and a commercial variety of B. napus. Some progeny from selfing or backcrossing of somatic hybrids to B. rapa showed much more resistance than either fusion partner. The offspring populations of the somatic hybrids (F1–S1 and F1–BC1) clearly moved to the resistant direction compared to the parents; the percentage of resistant plants increased from 21% (average of parents) to 36% (F1–S1) and 48% (F1–BC1). These results suggest that it may be possible to obtain highly resistant B. rapa lines by further backcrossing and selection.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...