Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 96 (1974), S. 83-92 
    ISSN: 1432-072X
    Keywords: Chemotaxis ; Chemoreceptor ; Motility ; Bacillus subtilis ; Aerotaxis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Quantitative measurement of positive chemotaxis inBacillus subtilis was performed by means of adaption of the procedure used in studies withEscherichia coli. The motility ofB. subtilis was optimal in the presence of an exogeneous energy source and a nonionic detergent,e. g. Tween 80 or Brij-36. B. subtilis is chemotactic toward the commonly occurringL-amino acids except arginine, lysine, aspartate and glutamate. No chemotactic response was observed towardD-amino acids. Threshold, optimal response and peak concentration were determined. Chemotaxis toward glutamine was optimal at pH 6-7 and a temperature of 32°C. The maximum response toward a particular attractant was presumably influenced by the aerotactic behavior ofB. subtilis.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 111 (1976), S. 7-11 
    ISSN: 1432-072X
    Keywords: Bacillus subtilis ; Motility ; Chemotaxis ; Chemoreceptor ; Tumble generator ; Proton-motive force
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Changes in the proton-motive force cause a transient change in the motile behavior of Bacillus subtilis cells. Both an increase and a decrease in the proton-motive force cause transient tumbling. Simultaneous decrease of proton-motive force and increase of attractant concentration lessens the response toward the attractant. A simultaneous increase of proton-motive force and increase of attractant concentration prolonges the response toward attractant. A hypothesis explaining the various effects is given.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 116 (1978), S. 1-8 
    ISSN: 1432-072X
    Keywords: Chemotaxis ; Bacillus subtilis ; Motility ; Valinomycin ; Nigericin ; Lipophilic cations ; Methylation ; Hyperpolarizing wave ; Ion gate ; Proton-motive force
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The effects of nigericin, valinomycin and some lipophilic cations on the motile behavior of non-starved and methionine-starved Bacillus subtilis cells were studied. For valinomycin and nigericin a quantitative relationship between the flux in the proton-motive force and the duration of the twiddle response was found. Lipophilic cations bind to the ion gate controlling the twiddle frequency and thereby cause the cells to swim smoothly. To explain the transmission of the chemotactic signal a model is given in which receptors, a hyperpolarizing wave, an ion gate and two methylation sites, viz. methyl-accepting chemotaxis proteins and a further methylation site (MT), play a role. For the transmission of the signal caused by an attractant both the hyperpolarizing wave and an interaction between receptor and methylation site (MT) are needed. The methyl-accepting chemotaxis proteins are involved in the adaptation/deadaptation to altered levels of attractant. Artificial changes in the proton-motive force act directly on the ion gate, which finally controlls the twiddle frequency of the cells.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...