Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles: DFG German National Licenses  (3)
  • Electronic Resource  (3)
  • Bone induction  (2)
  • Estradiol and progesterone  (1)
Source
  • Articles: DFG German National Licenses  (3)
Material
  • Electronic Resource  (3)
Years
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Calcified tissue international 35 (1983), S. 609-614 
    ISSN: 1432-0827
    Keywords: Matrix-induced endochondral bone formation ; Estradiol and progesterone ; Ornithine decarboxylase ; Mesenchymal cell
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine , Physics
    Notes: Summary The influence of estradiol and progesterone, alone or in combination, on the discrete phases of matrix-induced endochondral bone formation was investigated. Administration of estradiol and progesterone in combination increased mesenchymal cell proliferation, as indicated by [3H] thymidine incorporaton into acid precipitable material. However, ornithine decarboxylase (ODC) activity was significantly suppressed by the combination of estradiol and progesterone. Also, this treatment did not influence the35SO4 incorporation into proteoglycans on day 7. Mineralization of newly induced bone was quantitated by alkaline phosphatase,45Ca incorporation into bone mineral and calcium content, and was found to be significantly increased by progesterone alone and in combination with estradiol in both matrix-induced plaques and tibial metaphysis. These results demonstrated the stimulatory role of progesterone in combination with estradiol in bone formation and mineralization.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Calcified tissue international 35 (1983), S. 549-554 
    ISSN: 1432-0827
    Keywords: Endochondral ossification ; Acidic phospholipids ; Mineralization ; Bone induction
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine , Physics
    Notes: Summary The changes in lipids occurring during the process of endochondral ossification have been characterized by studying the discrete phases of matrix-induced endochondral bone formation in the rat. Calcium-acidic phospholipid-phosphate complexes were shown to increase in concentration during cartilage calcification (day 9) and to peak in content during early bone formation (day 11–13), the times during which the rate of mineral deposition, as indicated by the change in ash weight was greatest. These data support the hypothesis that the calcium-acidic phospholipid-phosphate complexes play a role in thein vivo initiation of hydroxyapatite deposition. The overall lipid composition of the induced matrix newly formed cartilage (days 7–9) was comparable to that of normal cartilage, with the phospholipid composition matching that of chondrocyte plasma membranes. Times of vascular invasion and formation of marrow cavities were marked by elevated total lipid and triglyceride contents.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Calcified tissue international 33 (1981), S. 425-430 
    ISSN: 1432-0827
    Keywords: Bone induction ; Insulin ; Chondrogenesis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine , Physics
    Notes: Summary The influence of somatostatin on discrete stages of collagenous-matrix-induced endochondral bone formation has been investigated. Local injection of somatostatin, i.e., without any measurable systemic effect, resulted in a 75% reduction of cell proliferation as measured by [3H]thymidine incorporation and ornithine decarboxylase activities. The minimum effective inhibitory dose of somatostatin was 0.25 µg/day. Twice daily local injections of the hormone during cartilage formation also resulted in an inhibition, but this was shown to be due to impaired cell proliferation rather than to a direct effect of somatostatin on differentiation. Injection of somatostatin into developing bone tissue after the cartilage stage impaired osteogenesis, assessed by45Ca incorporation and alkaline phosphatase activity. Concurrent injections of insulin and somatostatin obliterated the inhibitory effect of the latter on cell proliferation. Somatostatin can locally regulate the proliferation and differentiation of chondroprogenitor and osteoprogenitor cells in vivo and may directly contribute to the regulation of bone growth by its ability to counteract the stimulatory effect of insulin.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...