Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1434-1948
    Keywords: Cleavage reactions ; C-S cleavage ; Ligand synthesis ; Osmium ; Ruthenium ; S ligands ; Chemistry ; General Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: In search of a tetradentate thioether thiolate ligand that is more stable toward reductive C-S bond cleavage than the parent ligand ′S4′-H2 [′S4′-H2 = 1,2-bis(2-mercaptophenylthio)ethane], the novel tris-phenylene ligand ′tpS4′-H2 (3) [′tpS4′-H2 = 1,2-bis(2-mercaptophenylthio)phenylene] was synthesized via the nitro and amine compounds ′tpS2(NO2)2′ (1) and ′tpS2(NH2)2′ (2). The coordination of ′tpS4′2- to ruthenium centers resulted in the formation of six-coordinate [Ru(L)(PR3)(′tpS4′)] complexes (R = Et, L = PEt34; R = Ph, L = PPh35, CO 6, DMSO 7). The X-ray structure analyses of 4 and 6 revealed that the thiolate donors occupy trans positions; consequently the ′tpS4′2- ligand coordinates in the same way as the ′S4′2- ligand. The stability of the ′tpS4′2- ligand toward reductive C-S cleavage reactions was shown by the synthesis of [Os(PEt3)2(′tpS4′)] (8). In contrast to [Os(PEt3)2(′S4′)], 8 is stable for unlimited periods of time. The X-ray structure analysis of [Ru(Cl)2(PPh3)(′tpS2(NH2)2′)] (9) demonstrates that the potentially tetradentate ligand ′tpS2(NH2)2′ coordinates in 9 through three donors leaving one NH2 donor dangling.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Weinheim : Wiley-Blackwell
    Berichte der deutschen chemischen Gesellschaft 1999 (1999), S. 1715-1725 
    ISSN: 1434-1948
    Keywords: Nickel complexes ; Platinum complexes ; S ligands ; C-S cleavage ; Hydride complexes ; Chemistry ; General Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Nickel and platinum complexes with tridentate ligands, having [S3] or [NS2] donor sets were investigated in order to model active sites of enzymes such as hydrogenases or CO dehydrogenases. Starting from diphenyl sulfide, a preparative synthesis was developed for ‘S3’-H2 [‘S3’-H2 = bis(2-mercaptophenyl) sulfide]. Reactions of ‘S3’-H2 or anionic ‘S3’2- with nickel and platinum precursors resulted in the formation of binuclear [Ni(‘S3’)]2 (1) and trinuclear [Pt(‘S3’)]3 (5). Complex 1 was cleaved by PMe3 or CN- to give the mononuclear complexes [Ni(‘S3’)(PMe3)] (2) and NMe4[Ni(‘S3’)(CN)] (3). Attempts to coordinate hydride to the [Ni(‘S3’)] fragment led to C-S bond cleavage of the ligand and formation of (NMe4)2[{Ni(μ-SC6H5)(S2C6H4)}2] (4). Oxidative addition of Li[‘S3’-H] to [Pt(PPh3)4] afforded the platinum hydride complexes Li[Pt(H)(‘S3’)] and Li[Pt(H)(PPh3)(‘S3’)] which, however, could not be separated from each other and yielded [Pt(‘S3’)(PPh3)] (6) when treated with MeOH. In order to investigate electronic effects of the donor set, the ‘S3’ ligand was modified by alkylation of one thiol group to give ‘RS3’-H derivatives (R = Me, Et, Cy) and by replacing a mercaptophenyl unit by an amine in ‘Et2NS2’-H [‘Et2NS2’-H = N,N-diethyl-2-(2-mercaptothiophenyl)ethylamine]. Reactions of NiII or Ni0 compounds with these ligands in a 1:1 ratio yielded the 1:2 complexes [Ni(‘MeS3’)2] (7), [Ni(‘EtS3’)2] (9) and [Ni(‘CyS3’)2] (10), with ‘RS3’- acting as bidentate ligands only. Complex 7 reversibly reacted with PMe3 to form cis-[Ni(PMe3)2(‘MeS3’)2] (8), exhibiting monodentate ‘MeS3’ ligands. [Ni(‘Et2HNS2’)2]Br2 (11) reacted reversibly with bases to presumably give octahedral [Ni(‘Et2NS2’)2]. Complexes 7, 9 and 10 also did not yield any [Ni(‘RS3’)(H)] hydride complex when treated with hydride sources. Oxidative addition of ‘CyS3’-H to [Pt(PPh3)4] yielded the hydride complexes [Pt(H)(‘CyS3’)] and [Pt(H)(PPh3)(‘CyS3’)] which, however, formed an inseparable mixture and underwent C-S bond cleavage when heated, affording [Pt(o-S2C6H4)(PPh3)2]. The molecular structures of 1, 2, 3, 5, 6, 7, and 11 were determined by X-ray crystallography, revealing butterfly-like shapes for the [MS3L] cores of the complexes.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...