Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    European journal of clinical pharmacology 49 (1996), S. 309-315 
    ISSN: 1432-1041
    Keywords: Key words Caffeine ; Biotransformation; CYP1A2 ; CYP1A1 ; CYP2D6-Met CYP2D6-Val ; CYP2E1 ; cDNA-expressed microsomes
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Medicine
    Notes: Abstract. Objectives: The biotransformation of caffeine has been studied in vitro using human cytochrome P-450 isoenzymes (CYPs) expressed in human B-lymphoblastoid cell lines, namely CYP1A1, 1A2, 2A6, 2B6, 2D6-Val, 2E1 and 3A4, and microsomal epoxide hydroxylase (EH). In addition, CYP 2D6-Met was also studied, in which a valine in the wild type (CYP2D6-Val) has been replaced by a methionine due to a G to A mutation in position 112. Results: At caffeine 3 mmol ⋅l−1, five CYPs (1A1, 1A2, 2D6-Met, 2E1 and 3A4) catalysed the biotransformation of caffeine. Among the enzymes studied, CYP1A2, which predominantly catalysed paraxanthine formation, had the highest intrinsic clearance (160 l . h−1 ⋅ mmol−1 CYP). Together with its high abundance in liver, it should be considered, therefore, to be the most important isoenzyme in caffeine metabolism. The affinity of caffeine for CYP1A1 was comparable to that of its homologue 1A2. CYP2D6-Met, which catalysed caffeine metabolism by demethylation and 8-hydroxylation, also had a relatively high intrinsic clearance (3.0 l . h−1 mmol−1 CYP), in particular for theophylline and paraxanthine formation, with kM values between 9–16 mmol ⋅l−1. In contrast, the wild type, CYP2D6-Val, had no detectable activity. In comparison, CYP2E1 played a less important role in in vitro caffeine metabolism. CYP3A4 predominantly catalysed 8-hydroxylation with a kM value of 46 mmol ⋅l−1 and an intrinsic clearance of 0.60 l . h−1 ⋅ mmol −1 CYP. Due to its high abundance in human liver, the latter CYP may contribute significantly to the in vivo formation of TMU. Conclusion: The findings of this study indicate that i) microsomes from transfected human B-lymphoblastoid cell lines give results close to those obtained with microsomes isolated from human liver, ii) at least four CYP isoforms are involved in caffeine metabolism, iii) at a substrate concentration  〈 0.1 mmol ⋅l−1, CYP1A2 and 1A1 are the most important isoenzymes, iv) at higher concentrations the participation of other isoenzymes, in particular CYP3A4, 2E1 and possibly also CYP2D6-Met, are important in caffeine metabolism, and v) the nucleotide composition at position 1120 of CYP2D6 determines the activity of this isoenzyme in caffeine metabolism.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    European journal of clinical pharmacology 49 (1996), S. 309-315 
    ISSN: 1432-1041
    Keywords: Caffeine ; Biotransformation ; CYP1A2 ; CYP1A1 ; CYP2D6-Met CYP2D6-Val ; CYP2E1 ; cDNA-expressed microsomes
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Medicine
    Notes: Abstract Objectives: The biotransformation of caffeine has been studied in vitro using human cytochrome P-450 isoenzymes (CYPs) expressed in human B-lymphoblastoid cell lines, namely CYP1A1, 1A2, 2A6, 2B6, 2D6-Val, 2E1 and 3A4, and microsomal epoxide hydroxylase (EH). In addition, CYP 2D6-Met was also studied, in which a valine in the wild type (CYP2D6-Val) has been replaced by a methionine due to a G to A mutation in position 112. Results: At caffeine 3 mmol·l-1, five CYPs (1A1, 1A2, 2D6-Met, 2E1 and 3A4) catalysed the biotransformation of caffeine. Among the enzymes studied, CYP1A2, which predominantly catalysed paraxanthine formation, had the highest intrinsic clearance (160 l h-1·mmol-1 CYP). Together with its high abundance in liver, it should be considered, therefore, to be the most important isoenzyme in caffeine metabolism. The affinity of caffeine for CYP1A1 was comparable to that of its homologue 1A2. CYP2D6-Met, which catalysed caffeine metabolism by demethylation and 8-hydroxylation, also had a relatively high intrinsic clearance (3.0 l·h-1mmol-1 CYP), in particular for theophylline and paraxanthine formation, with kM values between 9–16 mmol·l-1. In contrast, the wild type, CYP2D6-Val, had no detectable activity. In comparison, CYP2E1 played a less important role in in vitro caffeine metabolism. CYP3A4 predominantly catalysed 8-hydroxylation with a kM value of 46 mmol·l-1 and an intrinsic clearance of 0.60 l·h-1·mmol-1 CYP. Due to its high abundance in human liver, the latter CYP may contribute significantly to the in vivo formation of TMU. Conclusion: The findings of this study indicate that i) microsomes from transfected human B-lymphoblastoid cell lines give results close to those obtained with microsomes isolated from human liver, ii) at least four CYP isoforms are involved in caffeine metabolism, iii) at a substrate concentration 〈0.1 mmol·l-1, CYP1A2 and 1A1 are the most important isoenzymes, iv) at higher concentrations the participation of other isoenzymes, in particular CYP3A4, 2E1 and possibly also CYP2D6-Met, are important in caffeine metabolism, and v) the nucleotide composition at position 1120 of CYP2D6 determines the activity of this isoenzyme in caffeine metabolism.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Annals of biomedical engineering 27 (1999), S. 88-95 
    ISSN: 1573-9686
    Keywords: Electrogastrography ; Gastric motility ; Stomach ; Filter banks ; Neural networks
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine , Technology
    Notes: Abstract Dysrhythmia in gastric myoelectrical activity has been frequently observed in patients with gastric motor disorders and gastrointestinal symptoms. The assessment of the regularity of gastric myoelectrical activity is of great clinical significance. The aim of this study was to develop an automated assessment method for the regularity of gastric myoelectrical activity from the surface electrogastrogram (EGG). The method proposed in this paper was based on the filter bank and neural network. First, the EGG signal was divided into frequency subbands using filter bank analysis. Second, a parameter called the subband energy ratio (SER) was computed for each subband signal. A multilayer perceptron neural network was then used to automatically classify the EGG signal into four categories: bradygastria, normal, tachygastria, and arrhythmia, using the SER as the input. The EGG recording was made using the standard method of electrogastrography by placing electrodes on the abdominal surface. The study was performed in 40 patients with various gastric motor disorders, ten healthy adults, and ten healthy children. The neural network was trained and tested using the EGG data obtained from the patients. The regularity of gastric myoelectrical activity was assessed based on the classification of the minute-by-minute EGG segments. Using the running spectral analysis method as a gold standard, the proposed automated method had an accuracy of 100% for the training set and 97% for the test set. It was concluded that the proposed method provides an accurate and automatic assessment of the regularity of gastric myoelectrical activity from the EGG. © 1999 Biomedical Engineering Society. PAC99: 8780-y, 8717-d, 0705Mh, 0270Hm
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Annals of biomedical engineering 26 (1998), S. 859-869 
    ISSN: 1573-9686
    Keywords: Spectral analysis ; Matching pursuit ; Stomach ; Gastric motility ; Electrogastrography ; Evolutionary programming ; Signal analysis ; Electrogastrogram
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine , Technology
    Notes: Abstract The electrogastrogram (EGG) is a surface measurement of gastric myoelectrical activity. The normal frequency of gastric myoelectrical activity in humans is 3 cycles/min. Abnormal frequencies in gastric myoelectrical activity have been found to be associated with functional disorders of the stomach. The aim of this article was, therefore, to develop new time-frequency analysis methods for the detection of gastric dysrhythmia from the EGG. A concept of overcomplete signal representation was used. Two algorithms were proposed for the optimization of the overcomplete signal representation. One was a fast algorithm of matching pursuit and the other was based on an evolutionary program. Computer simulations were performed to compare the performance of the proposed methods in comparison with existing time-frequency analysis methods. It was found that the proposed algorithms provide higher frequency resolution than the short time Fourier transform and Wigner-Ville distribution methods. The practical application of the developed methods to the EGG is also presented. It was concluded that these methods are well suited for the time-frequency analysis of the EGG and may also be applicable to the time-frequency analysis of other biomedical signals. © 1998 Biomedical Engineering Society. PAC98: 8780+s, 0705Kf
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...