Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Protoplasma 170 (1992), S. 46-52 
    ISSN: 1615-6102
    Keywords: Cytoplasmic migration ; Tip growth ; Actin ; Calcium ; UV microirradiation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Polarized tip-ward cytoplasmic contractions were induced in hyphae ofSaprolegnia ferax with ultraviolet microirradiations. These unidirectional contractions were similar in appearance and ionic requirements to those previously induced in hyphae ofBasidiobolus magnus, suggesting that the observed inherent cytoplasmic polarity is a general phenomenon. During growth the cytoplasm is continually moving forward with respect to the lateral cell wall and plasma membrane in order to maintain its position in the tip. These contractions may be an exaggerated form of this cytoplasmic migration. F-actin was most concentrated in the contracted cytoplasm, implying that it may be involved in generating the contraction. Contractions were enhanced by external Ca2+ and by irradiating the tip region which is rich in Ca2+ sequestering organelles, suggesting that flooding of the cytoplasm with Ca2+ caused the contractions. H+ did not affect contraction frequency. Neither the change in cytoplasmic consistency that preceded contraction, the contraction itself, nor the F-actin damage induced were confined to the microirradiated zone. This is in keeping with irradiation-induced damage to a network under tension or a flux of diffusible ions causing the response. Thus Ca2+ may regulate actin-myosin interactions that generate cytoplasmic migration.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Protoplasma 103 (1980), S. 205-229 
    ISSN: 1615-6102
    Keywords: Cell wall ; Cytochalasin B ; Microfibril orientation ; Microtubules
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Cortical microtubule arrays in the radish root hair were analyzed from reconstructions of serial ultra-thin sections in order to test extant hypotheses concerning the role of microtubules in the deposition of oriented microfibrils of cellulose. Passing away from the tip, root hairs exhibit a transition from random to oriented deposition of microfibrils at approximately 25 μm. Along the root hair, passing back from the tip, the microtubules: a) increase in number to a plateau at 25 μm; b) change their length profiles from approximately 60% less than 1 μm long in the hair tip to approximately 40% less than 1 μm long at 60 μm; c) maintain a constant pattern of angular deviation from the long axis, which is similar to the deviation pattern of the oriented wall fibrils; d) maintain a constant (approximately 70% of tubules) close (within 50 nm) proximity to the plasma membrane (PM); e) maintain a low (approximately 20%) degree of inter-microtubule proximity (i.e., within 50 nm of one another); f) show evidence for some variable long range (〉50 nm) association. Fixation with glutaraldehyde in a complete microtubule polymerization medium (MTPM), or pretreatment with cytochalasin B cause an approximate twofold increase in 1. the proportion of long microtubules in the tip region and 2. microtubules within 50 nm of one another. Fixation in incomplete MTPM (without GTP) produces results similar to phosphate buffer controls. Alternative explanations for these results are examined. A new hypothesis accounting for microtubule involvement in oriented microfibril deposition is described.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...