Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-2048
    Keywords: Key words:Allium (root development) ; Ascorbate ; Cell division ; Cell expansion ; Hydroxyproline-containing protein ; Root development
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract. Post-translational hydroxylation of peptide-bound proline residues, catalyzed by peptidyl-prolyl-4 hydroxylase (EC 1.14.11.2) using ascorbate as co-substrate, is a key event in the maturation of a number of cell wall-associated hydroxyproline-rich glycoproteins (HRGPs), including extensins and arabinogalactan-proteins, which are involved in the processes of wall stiffening, signalling and cell proliferation. Allium cepa L. roots treated with 3,4-DL-dehydroproline (DP), a specific inhibitor of peptidyl-prolyl hydroxylase, showed a 56% decrease in the hydroxyproline content of HRGP. Administration of DP strongly affected the organization of specialized zones of root development, with a marked reduction of the post-mitotic isodiametric growth zone, early extension of cells leaving the meristematic zone and a huge increase in cell size. Electron-microscopy analysis showed dramatic alterations both to the organization of newly formed cell walls and to the adhesion of the plasma membranes to the cell walls. Moreover, DP administration inhibited cell cycle progression. Root tips grown in the presence of DP also showed an increase both in ascorbate content (+53%) and ascorbate-specific peroxidase activity in the cytosol (+72%), and a decrease in extracellular “secretory” peroxidase activity (−73%). The possible interaction between HRGPs and the ascorbate system in the regulation of both cell division and extension is discussed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1615-6102
    Keywords: Aesculus hippocastanum ; Callus cultures ; Callus ultrastructure ; Embryogenic callus ; Non-embryogenic callus
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The cell ultrastructure in three types of callus obtained from leaf explants ofAesculus hippocastanum L. has been studied. Remarkable differences have been shown between the cells of the forerunner E1 callus and those of the callus arising from it, according to the culture conditions. The peculiar characteristics of E1 are the scarcity of intercellular spaces and the occurrence of autophagic vacuoles in the cells. An embryogenic friable callus (E2) is formed in time when E1 is maintained on solid culture medium. The E2 cells show cytological features typical of a higher metabolic level and contain starch. Diffused middle lamella digestion leads to the detachment of small embryogenic cell aggregates consisting of vacuolated parenchymatous-like cells and small meristematic cells which may be regarded as embryoids initials. Shaking E1 in the same liquid medium and subsequent culture on solid medium lead to the differentiation of a non-embryogenic callus (NE), whose cells are very large and highly vacuolated, devoid of starch and with organelle-rich cytoplasm. The NE callus shows a high degree of growth, but does not attain embryogenic competence in time.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...