Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Carbachol  (11)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Pflügers Archiv 423 (1993), S. 519-526 
    ISSN: 1432-2013
    Keywords: Carbachol ; Adenosine triphosphate ; Neurotensin ; Fura-2 ; Intracellular Ca2+ ; Ca2+ influx ; Mn2+ ; Verapamil ; Ni2+
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract In the present study we have investigated the mechanism of intracellular Ca2+ activity ([Ca2+]i) changes in HT29 cells induced by adenosine triphosphate (ATP), carbachol (CCH), and neurotensin (NT). [Ca2+]i was measured with the fluorescent Ca2+ indicator fura-2 at the single-cell level or in small cell plaques with high time resolution (1–40Hz). ATP and CCH induced not only a dose-dependent [Ca2+]i peak response, but also changes of the plateau phase. The [Ca2+]i plateau was inversely dependent on the ATP concentration, whereas the CCH-induced [Ca2+]i plateau increased at higher CCH concentrations. NT showed (from 10−10 to 10−7 mol/l) in most cases only a [Ca2+]i spike lasting 2–3 min. The [Ca2+]i plateau induced by ATP (10−6 mol/l) and CCH (10−5 mol/l) was abolished by reducing the Ca2+ activity in the bath from 10−3 to 10−4 mol/l (n=7). In Ca2+-free bathing solution the [Ca2+]i peak value for all three agonists was not altered. Using fura-2 quenching by Mn2+ as an indicator of Ca2+ influx the [Ca2+]i peak was always reached before Mn2+ influx started. Every agonist showed this delayed stimulation of the Ca2+ influx with a lag time of 23±1.5 s (n=15) indicating a similar mechanism in each case. Verapamil (10−6–10−4 mol/l) blocked dose dependently both phases (peak and plateau) of the CCH-induced [Ca2+]i increase. Short pre-incubation with verapamil augmented the effect on the [Ca2+]i peak, whereas no further influence on the plateau was observed. Ni2+ (10−3 mol/l) reduced the plateau value by 70%.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-2013
    Keywords: Cl− channels ; HT29 cells ; Ca2+-mobilizing hormones ; ATP ; Carbachol ; Neurotensin ; NPPB ; Patch clamp
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract The present study demonstrates the activation of Cl− channels in HT29 cells by agonist (ATP, neurotensin, carbachol) increasing cytosolic Ca2+, by hypotonic cell swelling and by cGMP. Cell-attached nystatin patch-clamp (CAN) as well as slow and fast wholecell recordings were used. The cell membrane potential was depolarized in a dose-dependent manner with halfmaximal effects at 0.4 umol/l for ATP, 60 pmol/l for neurotensin and 0.8 μmol/l for carbachol. The depolarization, which was caused by Cl− conductances increases, occurred within 1 s and was accompanied by a simultaneous and reversible increase of the input conductance of the cell-attached membrane from 295±32 pS to 1180±271 pS (ATP; 10 μmol/l, n=21) and 192±37 pS to 443±128 pS (neurotensin; 1 nmol/l, n=8). The effects of the agonists could be mimicked by ionomycin (0.2 umol/l), suggesting that an increase in intracellular Ca2+ was responsible for the activation of Cl− channels. The depolarization was followed by a secondary hyperpolarization. Hypotonic cell swelling also depolarized the cells and induced an increase in the membrane conductance. With 120 mmol/l NaCl the depolarization was 10±0.8 mV and the cell-attached conductance increased from 228±29 pS to 410±65 (n=26) pS. NaCl at 90 mmol/l and 72.5 mmol/l had even stronger effects. Comparable conductance increases were also obtained when the different agonists or hypotonic cell swelling were examined in whole cell experiments. 5-Nitro-2-(3-phenylpropylamino)-benzoate (1 μmol/l) did not prevent the effects of Ca2+-increasing hormones and of hypotonic solutions. An increase in Cl− conductance was also induced by 8-Br-cGMP (1 mmol/l) but not by heat-stable Escherichia coli toxin. In contrast to their conductance-increasing effects in CAN patches, the different agonists and cell swelling did not activate resolvable single channels in these cell-attached membranes. This indicates that the Cl− channels involved have a single-channel conductance too small (≤ 4 pS, 150 Hz) to be resolved by our techniques.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-2013
    Keywords: [Ca2+]i export ; Thapsigargin ; fura-2 ; HT29 ; CFPAC-1 ; ATP ; Carbachol ; Neurotensin
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract There is increasing evidence that some agonists not only induce intracellular Ca2+ increases, due to store release and transmembranous influx, but also that they stimulate Ca2+ efflux. We have investigated the agonist-stimulated response on the intracellular Ca2+ activity ([Ca2+]i) in the presence of thapsigargin (10−8 mol/l, TG) in HT29 and CFPAC-1 cells. For CFPAC-1 the agonists ATP (10−7–10−3 mol/l, n=9), carbachol (10−6–10−3 mol/l, n=5) and neurotensin (10−10–10−7 mol/l, n=6) all induced a concentration-dependent decrease in [Ca2+]i in the presence of TG. Similar results were obtained with HT29 cells. This decrease of [Ca2+]i could be caused by a reduced Ca2+ influx, either due to a reduced driving force for Ca2+ in the presence of depolarizing agonists or due to agonist-regulated decrease in Ca2+ permeability. Using the fura-2 Mn2+ quenching technique we demonstrated that ATP did not slow the TG-induced Mn2+ quench. This indicates that the agonist-induced [Ca2+]i decrease in the presence of TG was not due to a reduced influx of Ca2+ into the cell, but rather due to stimulation of Ca2+ export. We used the cell attached nystatin patch clamp technique in CFPAC-1 cells to examine whether, in the presence of TG, the above agonists still led to the previously described electrical changes. The cells had a mean membrane voltage of −49±3.6 mV (n=9). Within the first 3 min ATP was still able to induce a depolarization which could be attributed to an increase in Cl− conductance. This was expected, since at this time after TG stimulation all Ca2+ agonists still liberated some [Ca2+]i. When TG incubation was prolonged, agonist application led to strongly attenuated or to no electrical responses. Therefore, the agonist-stimulated [Ca2+]i decrease cannot be explained by the reduction of the driving force for Ca2+ into the cell. In the same cells hypotonic swelling (160 mosmol/l, n=15) still induced a further [Ca2+]i increase in the presence of TG and concomitantly induced Cl− and K+ conductances. We conclude that the agonist-induced decrease of [Ca2+]i in the presence of TG probably unmasks a stimulation of [Ca2+]i export.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Pflügers Archiv 431 (1996), S. 419-426 
    ISSN: 1432-2013
    Keywords: Key words Colon ; Triamterene ; Amiloride ; Na+ channel ; Cl ; channel ; K+ channel ; Carbachol
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Whole-cell patch-clamp studies were performed in isolated colonic crypts of rats pretreated with dexamethasone (6 mg/kg subcutaneously on 3 days consecutively prior to the experiment). The cells were divided into three categories according to their position along the crypt axis: surface cells (s.c.); mid-crypt cells (m.c.) and crypt base cells (b.c.). The zero-current membrane voltage (V m) was −56 ± 2 mV in s.c (n = 34); −76 ± 2 mV in m.c. (n = 47); and −87 ± 1 mV in b.c. (n = 87). The whole-cell conductance (G m) was similar (8–12 nS) in all three types of cells. A fractional K+ conductance accounting for 29–67% of G m was present in all cell types. A Na+ conductance was demonstrable in s.c. by the hyperpolarizing effect on V m of a low-Na+ (5 mmol/l) solution. In m.c. and b.c. the hyperpolarizing effect was much smaller, albeit significant. Amiloride had a concentration-dependent hyperpolarizing effect on V m in m.c. and even more so in s.c.. It reduced G m by approximately 12%. The dissociation constant (K D) was around 0.2 μmol/l. Triamterene had a comparable but not additive effect (K D = 30 μmol/l, n = 14). Forskolin (10 μmol/l, in order to enhance cytosolic adenosine 3′, 5′-cyclic monophosphate or cAMP) depolarized V m in all three types of cells. The strongest effect was seen in b.c.. G m was enhanced significantly in b.c. by 83% (forskolin) to 121% [8-(4-chlorophenylthio)cAMP]. The depolarization of V m and increase in G m was caused to large extent by an increase in Cl−conductance as shown by the effect of a reduction in bath Cl−concentration from 145 to 32 mmol/l. This manoeuvre hyperpolarized V m under control conditions significantly by 6–9 mV in all three types of cells, whilst it depolarized V m in the presence of forskolin in m.c. and in b.c.. These data indicate that s.c. of dexamethasone-treated rats possess mostly a K+ conductance and an amiloride- and triamterene-inhibitable Na+ conductance. m.c. and b.c. possess little or no Na+ conductance; their V m is largely determined by a K+ conductance. Forskolin (via cAMP) augments the Cl− conductance of m.c. and b.c. but has only a slight effect on s.c.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Pflügers Archiv 432 (1996), S. 112-120 
    ISSN: 1432-2013
    Keywords: Key words Cl ; secretion ; K+ channel ; Carbachol ; Exocrine secretion ; Pancreatic acini
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Acetylcholine-controlled exocrine secretion by pancreatic acini has been explained by two hypotheses. One suggests that NaCl secretion occurs by secondary active secretion as has been originally described for the rectal gland of Squalus acanthias. The other is based on a “push-pull” model whereby Cl− is extruded luminally and sequentially taken up basolaterally. In the former model Cl− uptake is coupled to Na+ and basolateral K+ conductances play a crucial role, in the latter model, Na+ uptake supposedly occurs via basolateral non-selective cation channels. The present whole-cell patch-clamp studies were designed to further explore the conductive properties of rat pancreatic acini. Pilot studies in approximately 300 cells revealed that viable cells usually had a membrane voltage (V m) more hyperpolarized than −30 mV. In all further studies V m had to meet this criterion. Under control conditions V m was −49 ± 1 mV (n = 149). The fractional K+ conductance (f K) was 0.13 ± 0.1 (n = 49). Carbachol (CCH, 0.5 μmol/l) depolarized to −19 ± 1.1 mV (n = 63) and increased the membrane conductance (G m) by a factor of 2–3. In the seeming absence of Na+ [replacement by N-methyl-D-glucamine (NMDG+)] V m hyperpolarized slowly to −59 ± 2 mV (n = 90) and CCH still induced depolarizations to −24 ± 2 mV (n = 34). The hyperpolarization induced by NMDG+ was accompanied by a fall in cytosolic pH by 0.4 units, and a very slow and slight increase in cytosolic Ca2+. f K increased to 0.34. The effect of NMDG+ on V m was mimicked by the acidifying agents propionate and acetate (10 mmol/l) added to the bath. The present study suggests that f K makes a substantial contribution to G m under control conditions. The NMDG+ experiments indicate that the non- selective cation conductance contributes little to V m in the presence of CCH. Hence the present data in rat pancreatic acinar cells do not support the push-pull model.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1432-2013
    Keywords: Key words BCECF ; Fura-2 ; pHi ; [Ca2+]i ; HT29 ; Carbachol ; Neurotensin ; ATP ; InsP3 ; Cell volume ; Calcein
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract  In this study we examined the influence of intracellular pH (pHi) on agonist-induced changes of intracellular Ca2+ activity ([Ca2+]i) in HT29 cells. pHi and [Ca2+]i were measured microspectrofluorimetrically using BCECF and fura-2, respectively. Buffers containing trimethylamine (TriMA), NH3/NH4 + and acetate were used to clamp pHi to defined values. The magnitudes of the peak and plateau of [Ca2+]i transients induced by carbachol (CCH, 10–6 mol/l) were greatly enhanced by an acidic pHi and nearly abolished by an alkaline pHi. The relationship between pHi and the [Ca2+]i peak was nearly linear from pHi 7.0 to 7.8. This effect of pHi was also observed at higher CCH concentrations (10–4 and 10–5 mol/l), at which the inhibitory effect of an alkaline pHi was more pronounced than the stimulatory effect of an acidic pHi. An acidic pHi shifted the CCH concentration/response curve to the left, whereas an alkaline pHi led to a rightward shift. The influence of pHi on [Ca2+]i transients induced by neurotensin (10–8 mol/l) or ATP (5 × 10–7 mol/l) was similar to its influence on those induced by CCH, but generally not as pronounced. Measurements of cellular inositol 1,4,5-trisphosphate (InsP 3) showed no changes in response to acidification with acetate (20 mmol/l) or alkalinization with TriMA (20 mmol/l). The InsP 3 increase induced by CCH was unaltered at an acidic pHi, but was augmented at an alkaline pHi. Confocal measurements of cell volume showed no significant changes induced by TriMA or acetate. Slow-whole-cell patch-clamp experiments showed no additional effect of CCH on the membrane voltage (V m) measured after TriMA or acetate application. We conclude that pHi is a physiological modulator of hormonal effects in HT29 cells, as the [Ca2+]i responses to agonists were significantly changed at already slightly altered pHi. The measurements of InsP 3, cell volume and V m show that pHi must act distally to the InsP 3 production, and not via changes of cell volume or V m.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1432-1912
    Keywords: Key words TMB-8 ; Fura-2 ; HT29 ; M3-receptor ; ATP ; Carbachol ; Neurotensin
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract  8-(N, N-diethylamino)octyl-3,4,5-trimethoxybenzoate (TMB-8) is a widely used pharmacological tool to investigate the involvement of intracellular Ca2+ stores in cellular responses. In this study we investigate the effect of TMB-8 as a putative inhibitor of “Ca2+ signalling” in single fura-2 loaded HT29 colonic epithelial cells stimulated by ATP, carbachol (CCH) and neurotensin (NT). TMB-8 effectively inhibited the CCH-induced (100 μmol/l intracellular Ca2+ ([Ca2+]i) transient with an IC50 of 20 μmol/l. However, [Ca2+]i transients induced by other phospholipase C coupled agonists ATP (10 μmol/l, n=4) and NT (10 nmol/l, n=4) remained unaffected by TMB-8 (50 μmol/l). The agonist-induced [Ca2+]i transients remained equally unaffected by 100 μmol/l TMB-8 when the stimulatory concentration was reduced to 0.5 μmol/l for ATP (n=4) or 1 nmol/l for NT (n=4). The competitive nature of the TMB-8-induced inhibition of the CCH-induced [Ca2+]i transient was demonstrated by examining the agonist at various concentrations in absence and presence of the antagonist. High TMB-8 concentrations (100 μmol/l) alone induced a small [Ca2+]i increase (Δ[Ca2+]i: 40±5 nmol/l, n=7). We assume that this increase is a consequence of a TMB-8 induced intracellular alkalinization (ΔpH: 0.1±0.02, n=7) occurring simultaneously with the increase in [Ca2+]i. From these results we draw the following conclusions: (1) In sharp contrast to a large number of other studies, but in agreement with studies in other types of cells, these results substantially challenge the value of the “tool” TMB-8 as an “intracellular Ca2+ antagonist”; (2) TMB-8 acts a muscarinic receptor antagonist at the M3 receptor; (3) TMB-8 does not influence the release of Ca2+ from intracellular stores when IP3 signal transduction is activated by ATP or NT; (4) TMB-8 as a weak organic base alkalinizes the cytosol at high concentrations; and (5) TMB-8 induces small [Ca2+]i transients at higher concentrations.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1432-1912
    Keywords: TMB-8 ; Fura-2 ; HT29 ; M3-receptor ; ATP ; Carbachol ; Neurotensin
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract 8-(N, N-diethyl amino) octyl-3,4,5-trimethoxybenzoate (TMB-8) is a widely used pharmacological tool to investigate the involvement of intracellular Ca2+ stores in cellular responses. In this study we investigate the effect of TMB-8 as a putative inhibitor of “Ca2+ signalling” in single fura-2 loaded HT29 coIonic epithelial cells stimulated by ATP, carbachol (CCH) and neurotensin (NT). TMB-8 effectively inhibited the CCH-induced (100 μmol/l intracellular Ca2+ ([Ca2+]i) transient with an IC50 of 20 μmol/l. However, [Ca2+]i transients induced by other phospholipase C coupled agonists ATP (10 μmol/l, n = 4) and NT (10 nmol/l, n = 4) remained unaffected by TMB-8 (50 μmol/l). The agonist-induced [Ca2+]i transients remained equally unaffected by 100 μmol/l TMB-8 when the stimulatory concentration was reduced to 0.5 μmol/I for ATP (n = 4) or 1 nmol/l for NT (n = 4). The competitive nature of the TMB-8-induced inhibition of the CCH-induced [Ca2+]i transient was demonstrated by examining the agonist at various concentrations in absence and presence of the antagonist. High TMB-8 concentrations (100 μmol/l) alone induced a small [Ca2+]i increase (Δ[Ca2+]i: 40 ± 5 nmol/l, n = 7). We assume that this increase is a consequence of a TMB-8 induced intracellular alkalinization (Δ pH: 0.1 ± 0.02, n = 7) occurring simultaneously with the increase in [Ca +]i. From these results we draw the following conclusions: (1) In sharp contrast to a large number of other studies, but in agreement with studies in other types of cells, these results substantially challenge the value of the “tool” TMB-8 as an “intracellular Ca2+ antagonist”; (2) TMB-8 acts a muscarinic receptor antagonist at the M3 receptor; (3) TMB-8 does not influence the release of Ca2+ from intracellular stores when IP3 signal transduction is activated by ATP or NT; (4) TMB-8 as a weak organic base alkalinizes the cytosol at high concentrations; and (5) TMB-8 induces small [Ca2+]i transients at higher concentrations.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Springer
    Pflügers Archiv 431 (1996), S. 419-426 
    ISSN: 1432-2013
    Keywords: Colon ; Triamterene ; Amiloride ; Na+ channel ; Cl− channel ; K+ channel ; Carbachol
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Whole-cell patch-clamp studies were performed in isolated colonic crypts of rats pretreated with dexamethasone (6 mg/kg subcutaneously on 3 days consecutively prior to the experiment). The cells were divided into three categories according to their position along the crypt axis: surface cells (s.c.); mid-crypt cells (m.c.) and crypt base cells (b.c.). The zero-current membrane voltage (V m) was −56 ± 2 mV in s.c (n = 34); −76 ± 2 mV in M.C. (n = 47); and −87 ± 1 mV in b.c. (n = 87). The whole-cell conductance (G m) was similar (8–12 nS) in all three types of cells. A fractional K+ conductance accounting for 29–67% ofG m was present in all cell types. A Na+conductance was demonstrable in s.c. by the hyperpolarizing effect onV m of a low-Na+ (5 mmol/1) solution. In m.c. and b.c. the hyperpolarizing effect was much smaller, albeit significant. Amiloride had a concentration-dependent hyperpolarizing effect onV m in m.c. and even more so in s.c.. It reducedG m by approximately 12%. The dissociation constant (K D) was around 0.2 μmol/l. Triamterene had a comparable but not additive effect (K D = 30 μmol/l,n = 14). Forskolin (10 μmol/l, in order to enhance cytosolic adenosine 3′, 5′-cyclic monophosphate or CAMP) depolarizedV m in all three types of cells. The strongest effect was seen in b. c..G m was enhanced significantly in b.c. by 83% (forskolin) to 121% [8-(4-chlorophenylthio)cAMP]. The depolarization ofV m and increase inG m was caused to large extent by an increase in Cl− conductance as shown by the effect of a reduction in bath Cl− concentration from 145 to 32 mmol/1. This manocuvre hyperpolarizedV m under control conditions significantly by 6–9 mV in all three types of cells, whilst it depolarizedV m in the presence of forskolin in m.c. and in b.c.. These data indicate that s.c. of dexamethasone-treated rats possess mostly a K+ conductance and an amiloride- and Tramterene-inhibitable Na+ conductance. m.c. and b.c. possess little or no Na+ conductance; theirV m is largely determined by a K+ conductance. Forskolin (via cAMP) augments the Cl− conductance of m.c. and b.c. but has only a slight effect on s.c.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1432-2013
    Keywords: Key words Cl ; secretion ; Carbachol ; K+ channel ; cAMP ; Exocrine secretion ; Non-selective cation channel ; Cl ; channel
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract  We have previously shown that a new type of K+ channel, present in the basolateral membrane of the colonic crypt base (blm), is necessary for cAMP-activated Cl- secretion. Under basal conditions, and when stimulated by carbachol (CCH) alone, this channel is absent. In the present patch clamp-study we examined the ion channels present in the blm under cell-attached and in cell-excised conditions. In cell-attached recordings with NaCl-type solution in the pipette we measured activity of a K+ channel of 16 ± 0.3 pS (n = 168). The activity of this channel was sharply increased by CCH (0.1 mmol/l, n = 26). Reduction of extracellular Ca2+ to 0.1 mmol/l (n = 34) led to a reversible reduction of activity of this small channel (SKCa). It was also inactivated by forskolin (5 μmol/l, n = 38), whilst the K+ channel noise caused by the very small K+ channel increased. Activity of non-selective cation channels (NScat) was rarely observed immediately prior to the loss of attached basolateral patches and routinely in excised patches. The NScat, with a mean conductance of 49 ± 1.0 pS (n = 96), was Ca2+ activated and required 〉10 μmol/l Ca2+ (cytosolic side = cs). It was reversibly inhibited by ATP (〈1 mmol/l, n = 13) and by 3′,5-dichloro-diphenylamine-2-carboxylate (10–100 μmol/l, n = 5). SKCa was also Ca2+ dependent in excised inside-out basolateral patches. Its activity stayed almost unaltered down to 1 μmol/l (cs) and then fell sharply to almost zero at 0.1 μmol/l Ca2+ (cs, n = 12). SKCa was inhibited by Ba2+ (n = 31) and was charybdotoxin sensitive (1 nmol/l) in outside-out basolateral patches (n = 3). Measurements of the Ca2+ activity ([Ca2+]i) in these cells using fura-2 indicated that forskolin and depolarization, induced by an increase in bath K+ concentration to 30 mmol/l, reduced [Ca2+]i markedly (n = 8–10). Hyperpolarization had the opposite effect. The present data indicate that the blm of these cells contains a small-conductance Ca2+-sensitive K+ channel. This channel is activated promptly by very small increments in [Ca2+]i and is inactivated by a fall in [Ca2+]i induced by forskolin.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...