Bibliothek

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    ISSN: 1432-1440
    Schlagwort(e): Prostaglandin E receptor ; EP4 subtype ; THP-1 ; Cyclic AMP ; Phorbol myristate acetate
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Medizin
    Notizen: Abstract We isolated a cDNA clone encoding the human prostaglandin (PG) E receptor EP4 subtype and examined the gene expression in human blood cells. Northern blot analysis revealed that the EP4 gene is expressed at a high level in peripheral blood mononuclear cells, and at lower levels in cultured human blood cell lines, THP-1 and U937 (monocytoid cell lines), MOLT-4 and Jurkat (T-cell lines), and Raji (B-cell line). To examine regulation of the EP4 gene expression in the immune system, we studied the effects of phorbol 12-myristate 13-acetate (PMA) on these cell lines. Gene expression was upregulated in THP-1, U937, and Raji cells by PMA, and was downregulated in MOLT-4 and Jurkat cells. In THP-1 cells the effects of PMA were further analyzed, and the upregulation of the EP4 gene was shown to be followed by an increase in PGE2 binding sites and in PGE2-induced cAMP accumulation. In the striking contrast, other PGE receptor subtypes (EP1, EP2 and EP3) and other prostanoid receptors (IP and DP) were shown not to be upregulated by PMA. Therefore, this is the first demonstration of a highly specific upregulation of the EP4 subtype in THP-1 cells treated with PMA, suggesting the importance of the EP4 subtype in the immune system. In the present study we also clarified that EP4 gene expression is regulated differently among human monocytoid and lymphoid lineage cells, thus leading to the better understanding of the regulatory mechanisms for the human EP4 gene expression in the immune system.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    ISSN: 1432-1440
    Schlagwort(e): Key words Prostaglandin E receptor ; EP4 subtype ; THP-1 ; Cyclic AMP ; Phorbol myristate acetate
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Medizin
    Notizen: Abstract  We isolated a cDNA clone encoding the human prostaglandin (PG) E receptor EP4 subtype and examined the gene expression in human blood cells. Northern blot analysis revealed that the EP4 gene is expressed at a high level in peripheral blood mononuclear cells, and at lower levels in cultured human blood cell lines, THP-1 and U937 (monocytoid cell lines), MOLT-4 and Jurkat (T-cell lines), and Raji (B-cell line). To examine regulation of the EP4 gene expression in the immune system, we studied the effects of phorbol 12-myristate 13-acetate (PMA) on these cell lines. Gene expression was upregulated in THP-1, U937, and Raji cells by PMA, and was downregulated in MOLT-4 and Jurkat cells. In THP-1 cells the effects of PMA were further analyzed, and the upregulation of the EP4 gene was shown to be followed by an increase in PGE2 binding sites and in PGE2-induced cAMP accumulation. In the striking contrast, other PGE receptor subtypes (EP1, EP2 and EP3) and other prostanoid receptors (IP and DP) were shown not to be upregulated by PMA. Therefore, this is the first demonstration of a highly specific upregulation of the EP4 subtype in THP-1 cells treated with PMA, suggesting the importance of the EP4 subtype in the immune system. In the present study we also clarified that EP4 gene expression is regulated differently among human monocytoid and lymphoid lineage cells, thus leading to the better understanding of the regulatory mechanisms for the human EP4 gene expression in the immune system.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Digitale Medien
    Digitale Medien
    Springer
    Experimental brain research 126 (1999), S. 410-416 
    ISSN: 1432-1106
    Schlagwort(e): Key words Vestibulocollic reflex ; Saccular nerve ; Utricular nerve ; Sternocleidomastoid motoneuron ; Cat
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Medizin
    Notizen: Abstract  Connections from the otolithic organs to sternocleidomastoid (SCM) motoneurons were studied in 20 decerebrate cats. The electrical stimulation was selective for the saccular or the utricular nerves. Postsynaptic potentials were recorded from antidromically identified SCM motoneurons; these muscles participate mainly in neck rotation and flexion. Partial transections of the brainstem at the level of the obex were performed to identify the possible pathway from the otolithic organs to the SCM motoneurons. Saccular or utricular nerve stimulation mainly evoked inhibitory postsynaptic potentials (IPSPs) in the ipsilateral SCM motoneurons. Some of the sacculus-induced IPSPs were preceded by small-amplitude excitatory PSPs (EPSPs). The latencies of the PSPs ranged from 1.8 to 3.1 ms after saccular nerve stimulation and from 1.7 to 2.8 ms after utricular nerve stimulation, indicating that most of the ipsilateral connections were disynaptic. In the contralateral SCM motoneurons, saccular nerve stimulation had no or faint effects, whereas utricular nerve stimulation evoked EPSPs in about two-thirds of neurons, and no visible PSPs in about one-third of neurons. The latencies of the EPSPs ranged from 1.5 to 2.0 ms, indicating the disynaptic connection. Thus, the results suggest a difference between the two otolithic innervating patterns of SCM motoneurons. After transection of the medial vestibulospinal tract (MVST), saccular nerve stimulation did not evoke IPSPs at all in ipsilateral SCM motoneurons, but some (11/40) neurons showed small-amplitude EPSPs. Most (24/33) of the utricular-activated IPSPs disappeared after transection, whereas the other 9 neurons still indicated IPSPs. In the contralateral SCM motoneurons, no utricular-activated EPSPs were recorded after transection. These MVST transection results suggest that most of the otolith-SCM pathways are located in the MVST at the obex level. However, the results also suggest the possibility that other otolith-SCM pathways exist at the obex level.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...