Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0428
    Keywords: Keywords Genetic susceptibility ; linkage disequilibrium ; association ; positional cloning ; microsatellite marker.
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary An insulin-dependent diabetes mellitus (IDDM)-susceptibility gene (IDDM13) has recently been mapped to a region of distal chromosome 2q, which is syntenic to the region of mouse chromosome 1 containing a murine susceptibility gene for IDDM, Idd5. To determine the contribution of this region to IDDM disease susceptibility further and to narrow the region for positional cloning of susceptibility genes, we have studied the association of distal chromosome 2q with IDDM in the genetically distinct Japanese population. A 137 mobility unit (mu) allele at D2S137 locus was significantly associated with IDDM (odds ratio 1.92, p = 0.0016). Other markers, D2S301 and D2S143, located in the same region were not associated with IDDM, indicating that IDDM13 is in linkage disequilibrium with D2S137, but not with D2S301 or D2S143. The association of D2S137 with IDDM was observed in patients lacking one of two high risk HLA alleles, DQB1 * 0303 and DQB1 * 0401, but not in patients with either of these alleles. The frequency of high risk HLA alleles was significantly lower in patients with the susceptible allele at D2S137, suggesting that IDDM13 contributes to IDDM susceptibility in subjects without high risk genotypes at IDDM1. Demonstration of allelic association of D2S137 with IDDM localizes IDDM13 in the close vicinity (〈 2 centiMorgans) of D2S137, greatly facilitating fine structure mapping and positional cloning of IDDM13. [Diabetologia (1998) 41: 228–232]
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 112 (1996), S. 197-202 
    ISSN: 1432-1106
    Keywords: Utricular nerve ; Vestibulospinal neuron ; Lateral and medial vestibulospinal tracts ; Vestibular nuclei ; Cat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract The axonal pathway, conduction velocities, and locations of the cell bodies of utricular nerve-activated vestibulospinal neurons were studied in decerebrated or anesthetized cats using the collision test of orthodromic and antidromic spikes. For orthodromic stimulation, bipolar tungsten electrodes were placed on the utricular nerve and the other vestibular nerve branches were transected. Monopolar tungsten electrodes were positioned on both sides of the upper cervical segments (C2–4), caudal end of the cervical enlargement (C7-T1), and from the lower thoracic to the upper lumbar segments (T12-L3) and were used for antidromic stimulation of the spinal cord. Another monopolar electrode was also placed in the oculomotor nucleus to study whether utricular nerve-activated vestibulospinal neurons have ascending branches to the oculomotor nucleus. Of the 173 vestibular neurons orthodromically activated by the stimulation of the utricular nerve, 46 were second-order vestibulospinal neurons and 5 were third-order neurons. The majority of the utricular nerve-activated vestibulospinal neurons were located in the rostral part of the descending vestibular nucleus and the caudal part of the ventral lateral nucleus. Seventy-three percent of the utricular nerve-activated vestibulospinal neurons descended through the ipsilateral lateral vestibulospinal tract. Approximately 80% of these neurons reached the cervicothoracic junction, but a few reached the upper lumbar spinal cord. Twenty-seven percent of the utricular nerve-activated vestibulospinal neurons descended through the medial vestibulospinal tract or the contralateral vestibulospinal tracts. Those axons terminated mainly in the upper cervical segments. Almost none of the utricular nerve-activated vestibular neurons had ascending branches to the oculomotor nucleus.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...