Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Cellular Physiology 140 (1989), S. 44-51 
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: The KC gene is a cell cycle-dependent competence gene originally identified in platelet-derived growth factor-stimulated BALB/c-3T3 cells. This gene is also induced in murine peritoneal macrophages in response to activation stimuli. We have examined the expression of the KC gene in cultured porcine aortic endothelial cells following treatment with bacterial lipopolysaccharide (LPS) as a first step in defining the early molecular events involved in endothelial cell stimulation by physiologically relevant modulators. LPS markedly elevated the steady-state level of KC mRNA in confluent endothelial cells; maximum induction of KC occurred in the cells following exposure to 10 ng/ml LPS for 2 h. LPS did not increase the growth fraction of the cells, nor was the KC mRNA level changed in dense endothelial cells stimulated to enter the cell cycle with epidermal growth factor. However, KC mRNA expression was elevated by addition of serum to starved, subconfluent endothelial cell cultures. Treatment of endothelial cells with phorbol myristate acetate (PMA) and 1-oleoyl-2-acetyl-glycerol (OAG) also induced KC gene expression. A maximum response was obtained with 10 nM PMA, the effect decreasing with higher levels of the phorbol ester. The calcium ionophore A23187 exhibited little stimulatory activity alone; however, the ionophore did cause a doubling in the PMA-stimulated KC expression. The increased expression of KC induced by LPS and PMA was inhibited by the presence of 1-(5-isoquinoline-sulfonyl)-2-methylpiperazine (H7), a protein kinase C inhibitor, but not by HA1004 (an H7 analogue with little protein kinase C inhibitory activity). No cytotoxicity was observed in inhibitor or LPS-treated endothelial cell cultures. These results demonstrate that KC gene expression is stimulated by LPS in vascular endothelial cells in a proliferation-independent process. Second, unlike LPS-induced KC expression in macrophages and platelet-derived growth factor-induced KC expression in 3T3 cells, LPS induction of KC in endothelial cells appears to require activation of protein kinase C.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    The @Anatomical Record 214 (1986), S. 141-147 
    ISSN: 0003-276X
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: The purpose of the present quantitative structural study was to determine whether the histological alterations seen in pressure overloaded myocardium return to normal, as in vitro contractile function does, upon removal of the pressure overload stimulus. Three experimental groups of four cats each were studied: a group with pulmonary artery banding to create a pressure overload, a group that had been subjected to an equivalent duration of pressure overload and then had that pressure overload removed, and a group of sham-operated controls. Seven to 10 weeks after each operative procedure, the right ventricular pressure was elevated only in the pulmonary artery-banded group. The right ventricle/body weight ratio was significantly increased in the pressure overloaded group only. The body weight at sacrifice, the left ventricle/body weight ratio, and the right ventricular end-diastolic pressure did not differ significantly in the three groups. The striking histological changes in the right ventricular myocardium hypertrophying in response to a pressure overload were the decrease in the volume density of cardiocytes and the increase in connective tissue in papillary muscles. These were reversed when the pressure overload was removed. This study demonstrates that when a pressure overload is removed, myocardial structure returns to normal as the function returns to normal. Given the critical importance of the proportion of cardiocytes and connective tissue components to both systolic and diastolic cardiac function, these data support the hypothesis that the abnormal proportions of these structures provide a potential morphological basis for at least some of the functional abnormalities observed in pressure overload hypertrophy of the cat right ventricle.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 0002-9106
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: Previous studies have demonstrated that there is a disproportionate increase in connective tissue in right ventricular myocardium subjected to pressure-overload hypertrophy associated with depressed cardiac contractility. While the myocardium is primarily responsive to load, the aim of the present study was to determine whether catecholamines also modulate the response of myocardial tissue components and cardiocyte organelles in pressure-overload-induced cardiac hypertrophy. Four experimental groups of cats were examined: (1) a sham-operated control group, (2) a group which had their pulmonary arteries banded in order to induce a pressure overload, (3) a group which had been subjected to the same pressure overload, but in addition had β-adrenoceptor blockade produced prior to and during the pressure overloading, and (4) a group which had been subjected to the same pressure overload, but in addition had α-adrenoceptor blockade produced prior to and maintained during the pressure overloading. As in our previous study, there was a significant and equivalent degree of right ventricular hypertrophy in all experimental groups with pressure overload when assessed either as the ratio of right ventricular weight to body weight or as cardiocyte cross-sectional area. At the light microscopic level, the disproportionate increase in the volume density of myocardial connective tissue seen in banded animals was completely prevented by either α- or β-adrenoceptor blockade. At the electron microscopic level, there was a reduction in the mitochondrial and myofibrillar volume fractions following β-adrenoceptor blockade. The results of this study provide evidence for a modulatory role of catecholamines in the control of myocardial connective-tissue proliferation in pressure-overload-induced cardiac hypertrophy. There is also evidence to support the role of the adrenergic nervous system in regulating cardiocyte subcellular organelles, independent of the regulation of cardiocyte size.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    American Journal of Anatomy 186 (1989), S. 127-132 
    ISSN: 0002-9106
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: Norepinephrine stimulates the growth in size of non-dividing, neonatal cardiac muscle cells, and it can stimulate the growth in numbers of dividing hepatocytes and endothelial cells in culture. The objective of this study was to test the hypothesis that in dividing fetal cardiocytes, norepinephrine would stimulate growth in cell number rather than in cell size. Fourteen-day fetal heart cells were placed in serum-free or serum-supplemented cultures in the presence or absence of norepinephrine (NE), NE plus propranolol, or isoproterenol for 4 days. Almost 90% of the cardiocytes in serum-supplemented medium were in the cell cycle as determined by proliferating cell nuclear antigen (PCNA) antibody staining during this period. In addition, between days 2 and 4 of culture, 35% and 40% of these cardiocytes were labeled with 3H-thymidine. After 4 days the cardiocytes increased in cell number in the serum-supplemented NE cultures as compared to serum-free cultures. In contrast, there was no significant change in cardiocyte volume between any of the groups examined. It was concluded that in dividing muscle cell populations the effect of norepinephrine was to enhance cell proliferation rather than to stimulate cell growth in size.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 0730-2312
    Keywords: T-lymphocyte activation ; protein kinase C and gene regulation ; lymphocyte receptor expression ; protein kinase C ; 5-azacytidine ; IL-2:recetor ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Resting human T lymphocytes do not express receptors for interleukin-2, but expression is rapidly induced by exposure to PHA. After maximal expression 2-3 days after stimulation, a progressive decline in receptor number is observed. Receptor expression can be augmented by reexposure to PHA. In this study we show that activators of protein kinase C including phorbol diester, phospholipase C, and the diacylglycerol congener diC8 also increase IL-2 receptor expression. Moreover, 5-azacytidinc, which inhibits cytosine methyltransferase, and hydroxy-urea, which inhibits ribonucleotide reductase, also increased receptor number. These studies demonstrate that IL-2 receptor expression can be altered in vitro, and that IL-2 receptor number, in combination with IL-2 secretion, may contribute to the regulation of IL-2-dependent immune responses.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Cellular Physiology 131 (1987), S. 36-42 
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Treatment of murine peritoneal macrophages for 30 min with lipopolysaccharide (LPS) resulted in a transient increase in c-fos proto-oncogene mRNA levels (Introna et al., 1986). After 2 h from the initial treatment, c-fos mRNA could no longer be detected and its expression could not be restimulated either by LPS or by other signals including colony stimulating factor-1 (CSF-1) and phorbol myristate acetate (PMA), both of which are able to induce expression of the c-fos gene in unstimulated macrophages. When LPS was removed after an initial 30 min incubation, responsiveness to a second exposure to LPS began to reappear after 3 h and was completely restored by 20 h. The same pattern of desensitization of c-fos induction was observed when CSF-1 stimulated macrophages were subsequently exposed to LPS. The loss of sensitivity to PMA following pretreatment with LPS was selective for c-fos expression as LPS treated macrophages remained responsive to PMA with respect to the ability to stimulate secretion of H2O2. The mechanism of desensitization was localized, at least in part, at the level of transcription as demonstrated by analysis of c-fos transcripts in nuclei isolated from macrophages pretreated and restimulated with LPS.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Early biochemical events in the response of murine peritoneal macrophages to bacterial lipopolysaccharide (LPS) have been examined (i.e., 0-4 hr after initiation of treatment). At concentrations of 10 ng/ml or less, LPS stimulated the new or enhanced synthesis of a series of at least six polypeptides of 85, 80, 75, 65, 57, and 38 kD. This effect was dependent upon the lipid A moiety of LPS as lipid A itself could induce the changes and the effect of LPS could be blocked by inclusion of polymixin B sulfate in the culture medium. The effect was specific for LPS in that other endotoxin-free agents known to alter macrophage physiology could not produce the same changes. The time course of LPS stimulation of macrophage protein synthesis was remarkable in that the synthesis of all six proteins was transient even in the continued presence of LPS, being first detected approximately 1 hr after exposure and no longer apparent by 8-10 hr after treatment was initiated. Furthermore, both pulse-chase and cumulative radiolabeling studies indicated that at least two of the proteins (85 and 38 kD) were short-lived and did not accumulate in LPS-treated cells, suggesting the possibility that they participate in a regulatory rather than a functional role. Macrophage tumoricidal activation involves cooperation in response to two independent signals; interferon gamma and LPS. Pretreatment of macrophages with interferon gamma increased the sensitivity of macrophages to LPS-stimulated protein synthesis by one to two orders of magnitude documenting such cooperativity in molecular terms. The LPS-induced stimulation of specific protein synthesis could be reproduced by treatment of macrophages with heat killed Listeria monocytogenes, a gram-positive, endotoxin-negative bacterial stain which has been shown to substitute effectively for LPS in macrophage tumoricidal activation. Furthermore, reversible inhibition (i.e., treatment with cycloheximide) of protein synthesis during LPS treatment abrogated the acquisition of tumoricidal function. These results identify an early biochemical response to LPS which may be a necessary component of the intracellular transduction of signals which regulate macrophage functional development.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Cellular Physiology 125 (1985), S. 485-491 
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Macrophage activation for tumoricidal and microbicidal functions can be achieved in part by treatment with recombinant interferon gamma (IFNγ) in vitro. We have previously demonstrated that IFNγ treatment of murine peritoneal macrophages results in a two- to five-fold increase in the activity of Ca++, phospholipid dependent protein kinase C (Hamilton et al., J. Biol. Chem., 260: 1378, 1985). We now report that this effect was not dependent upon continuing protein synthesis since treatment with cycloheximide under conditions where normal protein synthesis was inhibited by greater than 95% had no effect upon the development of increased enzyme activity. Examination of Ca++ and phospholipid requirements revealed no differences between enzyme isolated from control or IFNγ-treated cells could not be distinguished in terms of the diacyglycerol (DG) or phorbol diester (PMA) concentration required for stimulation of activity. Kinetic analysis of the ATP (as substrate)concentration dependence revealed that both control and treated enzyme preparations (either basal or stimulated) had comparable Km values. Maximum velocity (Vmax) was increased both by IFNγ treatment and also by stimulation with DG or PMA. The major difference which could be discerned between protein kinase C derived from control versus IFNγ-treated macro-phages was the magnitude of the response to DG or PMA; IFNγ treatment increased the stimulation index (i.e., ratio of basal to stimulated activity) by a factor of two to four fold. These results suggest that IFNγ treatment leads to reversible modulation of existing protein kinase C resulting in increased catalytic efficiency when exposed to an appropriate stimulant.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Cellular Physiology 137 (1988), S. 167-172 
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Beta transforming growth factor (TGF beta) has multiple in vitro biological effects including stimulation or inhibition of proliferation of specific cell types. A second major form of TGF beta, TGF beta-2, has recently been isolated from porcine platelets, from bovine bone matrix, and from several other sources. The two forms of TGF beta are biologically equipotent with the exception that TGF beta-2 was much less active than TGF beta-1 for inhibition of proliferation of a rat pleuripotent hematopoietic stem cell line. During the purification of beta TGF from bone, we obtained two fraction pools that differed in their ability to inhibit 3H-thymidine incorporation into aortic endothelial cells (AEC). We therefore compared highly purified TGF beta-1 and TGF beta-2 isolated from porcine platelets for inhibition of DNA synthesis in mink lung epithelial cells (MvlLu), and in AEC, and for stimulation of 3H-thymidine incorporation in calvarial bone cells (CBC) in 3 experiments. TGF beta-1 and TGF beta-2 inhibited cell proliferation in MvlLu with no significant differences in the ED50 (31± 8pg/ml vs 23± 7). TGF beta-2 was much less potent than TGF beta-1 in inhibiting DNA synthesis in AEC (6310 ± 985 pg/ml vs 101 ± 34). The reduced specific activity of TGF beta-2 was also observed in adrenal capillary endothelial cells. Both beta-1 and beta-2 stimulated proliferation of CBC (ED50 26 ± 2 pg/ml vs 10 ± 4). We also examined the specificity of the MvlLu and AEC inhibition assays. Epidermal growth factor (EGF), platelet derived growth factor (PDGF), acidic and basic fibroblast growth factor (FGF), skeletal growth factor (SGF)/insulin-like growth factor-II (IGF-II), and insulin-like growth factor-I (IGF-I) did not inhibit DNA synthesis in either assay system. However, when the growth factors were added to maximal inhibiting concentrations of TGF beta-1, both acidic and basic FGF significantly reduced TGF beta-1 inhibition in AEC. We conclude that (1) inhibition of DNA synthesis in endothelial cells is relatively specific for TGF beta-1, (2) inhibition of DNA synthesis in MvlLu is a sensitive and specific assay for generic TGF beta activity but does not distinguish beta-1 from beta-2, (3) the relative inhibition of DNA synthesis in MvlLu and AEC may provide a means to quantitatively estimate TGF beta-1 and TGF beta-2, and (4) both TGF beta-1 ad TGF beta-2 are potent mitogens for chicken embryonic calvarial bone cells.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Human skeletal growth factor (hSGF), an 11-kD polypeptide purified from human bone, has been proposed to be a local regulator of bone formation. To investigate the underlying cellular mechanisms in an in vitro model system, we examined the effects of hSGF on proliferation and collagen synthesis in cells of the clonal osteoblast cell line MC3T3-E1. This line was isolated from newborn mouse calvarial cells and retains many characteristics of mature osteoblasts (Sudo, H., et al., (1984) J. Cell Biol. 96:191). A 14-hr treatment with hSGF increased noncollagenous protein synthesis to 215% of unstimulated controls and increased collagen synthesis to 630% of controls as determined by [3H]proline incorporation and high-pressure liquid chromatographic separation of [3H]proline and [3H]hydroxyproline in acid hydrolysates of trichloroacetic acid-insoluble protein. HSGF did not increase cell number over a 48-hr period and caused a reversible inhibition of DNA synthesis. Half-maximal hSGF concentration for stimulation of [3H]proline incorporation and inhibition of [3H]thymidine incorporation was 100 ng/ml. HSGF also inhibited DNA synthesis in cells stimulated by serum. In contrast, hSGF stimulated both collagen synthesis and DNA synthesis in primary cultures of chick embryo bone cells, which may be developmentally less mature than MC3T3-E1 cells. The results suggest that hSGF directly stimulated mature osteoblast matrix synthetic activity and that hSGF has differential effects on proliferation of osteoblast progenitor cells and mature osteoblasts.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...