Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Cellular Physiology 158 (1994), S. 485-494 
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Cellular mechanisms responsible for the termination of ET-1 signal are poorly understood. In order to examine the hypothesis that nitric oxide serves as a physiological brake of ET- 1 signaling, Chinese hamster ovary (CHO) cells stably transfected with the ETA receptor cDNA (CHO-ET) were studied. CHO-ET responded to ET-1 with robust [Ca2+], transients and developed a long-lasting homologous desensitization. Donors of nitric oxide (NO), 3-morpholino-sydnonimine HCl(SIN-1), or sodium nitroprusside (SNP) reduced the amplitude of these responses, accelerated the rate of [Ca2+], recovery, and counteracted the development of homologous desensitization by a cyclic GMP-independent mechanism, suggesting an alternative mode for NO modulation of ET-1 responses. Stimulation of CHO-ET cells with mastoparan, a wasp venom acting directly on G proteins (bypassing receptor activation), was inhibited by NO, revealing a postreceptoral target for NO-induced modulation of [Ca2+] mobilization. Using a lys9-biotinylated ET-1 (ET-1 [BtK9]), binding sites were “mapped” in CHO-ET cells. Receptor-ligand complexes did not exhibit spontaneous dissociation during 60min observations. Quantitative fluorescence microscopy revealed that SNP or SIN-1 caused a rapid, concentration-dependent, and reversible dissociation of biotinylated ET- 1 from ETA receptor (EC50 = 75 μM and 6 μM, respectively), an effect that was not mimicked by 8-bromo-cyclic GMP. “Sandwich” co-culture of endothelial cells with CHO-ET showed that activation of NO production by endothelial cells similarly resulted in dissociation of ET-1 [BtK9] from ETA receptors. We hypothesize that NO plays a role in physiological termination of ET-1 signalling by dual mechanisms: (1) displacement of bound ET-1 from its receptor, thus preventing homologous desensitization, and (2) interference with the postreceptoral pathway for [Ca2+] mobilization, hence inhibiting end-responses to ET-1. © 1994 Wiley-Liss, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...