Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Protoplasma 123 (1984), S. 152-159 
    ISSN: 1615-6102
    Keywords: Cellular slime mold ; Dictyostelium discoideum ; Development ; Electronmicroscopy ; Golgi apparatus ; Prespore vacuole
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary When shaken in a glucose-albumin-cyclic AMP medium, dissociated aggregative cells form small clumps in which prespore cells differentiate fairly synchronously (Okamoto 1981). Formation of prespore vacuoles (PSVs) in differentiating prespore cells was examined in these culture conditions, by electronmicroscopy and immunocytochemistry. After 6 hours of culture, a typical Golgi apparatus composed of vesicles and stacked flat cisternae develops near the nucleus. FITC-conjugated antispore serum stains a crescent-shaped region in the cells which seems to correspond to the Golgi area. After 9 hours, flat sacs which contain electron dense lining membrane similar to that of PSVs appear alongside Golgi cisternae. Later, partially and fully round PSVs are observed in this region, suggesting that flat sacs round up to become mature PSVs. After 12 hours, as mature PSVs increase in number, they become dispersed throughout the cytoplasm and a typical Golgi apparatus with cisternae disappears. When cultured in a medium devoid of cyclic AMP, cells develop neither Golgi cisternae nor PSVs. These results strongly suggest that PSVs form from Golgi cisternae.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1615-6102
    Keywords: Dictyostelium mucoroides ; Cellular slime mold ; Cytoplasmic pH ; Ethylene ; Cyclic AMP ; Sexual development ; Macrocyst ; Sorocarp
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Dictyostelium mucoroides-7 (Dm 7) and a mutant MF 1 derived from it exhibit two developmental pathways: sorocarp formation occurs during the asexual process, and macrocyst formation during the sexual cycle. The two developmental pathways are mainly regulated by two chemical substances: 3′,5′-cyclic adenosine monophosphate (cAMP) and ethylene. Recently, we have demonstrated that cytoplasmic pH (pHi) has a critical role for the choice of developmental pathways, higher pHi being favourable to macrocyst formation. Thereupon, attention was riveted to the relation of pHi to biosynthesis of cAMP and ethylene. Effect of pHi on the production and release of ethylene, a potent inducer of macrocyst formation, was examined, using the two facing culture method. The result showed that lowered pHi inhibits ethylene production, thus resulting in a failure of cells to form macrocysts. The accumulation of cAMP, an inhibitor of macrocyst formation, was found to vary depending on extracellular pH (pHo), but diethylstilbestrol (DES) that is a proton pump inhibitor and also an inhibitor of macrocyst formation had no significant effect on the accumulation. Taken together these results indicate that higher pHi may induce macrocyst formation through enhancement of ethylene production rather than inhibition of cAMP synthesis.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Protoplasma 167 (1992), S. 159-168 
    ISSN: 1615-6102
    Keywords: Dictyostelium mucoroides ; Ethylene ; Sexual development ; Macrocyst ; Sorocarp
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The cellular slime moldDictyostelium mucoroides-7 (Dm 7) and its mutant (MF 1) exhibit sexual or asexual development depending upon culture conditions. During the sexual cycle macrocyst formation occurs, whereas sorocarps containing spores and stalk cells are asexually formed. As previously reported, the macrocyst formation is marked by the emergence of true zygotes, and is induced by a potent plant hormone, ethylene. The concentration of ethylene required for macrocyst induction was determined to establish the similarity of ethylene action between this organism and higher plants. Macrocysts are induced by low (1 μl/l) exogenous concentrations of ethylene. Higher concentrations (10–1,000 ul/l) also gave essentially the same inductive activity. Ethionine, an analogue of methionine, was found to inhibit zygote formation during sexual development through its interference with ethylene production by Dm 7 and MF 1 cells. In fact, the inhibitory effect of ethionine was mostly nullified by the application of ethylene, S-adenosyl-L-methionine, or 1-aminocyclopropane-1-carboxylic acid. Taken together these results suggest that both the effective concentration of ethylene and the pathway of ethylene biosynthesis inD. mucoroides may be similar to those in higher plants. Ethylene was also found to be produced in various species and strains of cellular slime molds, even during the asexual process. The possible functions of ethylene in the asexual development are discussed in relation to cell aggregation and differentiation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...