Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Stamford, Conn. [u.a.] : Wiley-Blackwell
    Polymer Engineering and Science 31 (1991), S. 223-230 
    ISSN: 0032-3888
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: The equibiaxial elongational viscosity of polystyrene was determined using a lubricated squeezing technique. Constant strain rates up to Hencky strains of 4.5 could be maintained by a newly constructed instrument. Test results from controlled stress and controlled strain rate measurement were consistent and yielded well-defined steady-state viscosities. Measurements appeared to be unaffected by sample geometry, although proper lubrication is important in achieving steady state. The measured biaxial viscosity appeared to be strain rate thinning above a biaxial strain rate of ≈ 0.01 s-1 at 160°C. As anticipated in the Newtonian region, biaxial elongational viscosity was approximately six times the shear viscosity. Thinning indices of both shear and biaxial elongational viscosities were 0.75. Data obtained at various temperatures were shifted following the timetemperature superposition principle. The resulting master curve could be fitted by a Carreau model with n ≈ 0.3 and a time constant of 110 s.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Stamford, Conn. [u.a.] : Wiley-Blackwell
    Polymer Engineering and Science 33 (1993), S. 860-863 
    ISSN: 0032-3888
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: A series of liquid crystal polymer/polyethylene (LCP/PE) blends have been studied to determine the potential of such a system to produce a high modulus film material which retains fabrication and low temperature characteristics of some current PE films. The subject of liquid crystalline polymer blends has been the focus of significant attention for the last decade due to the novel rheological and mechanical properties of this class of polymers. It has been demonstrated that if an LCP blend is processed under elongational flow conditions, the partially ordered LCP meso-phase intermediate allows the development of an oriented fibrillar morphology which is retained upon solidification. In this study, blown films of blends of 5 and 15% LCP in PE have been produced which show an enhancement in modulus over the neat PE matrix. These results are discussed in terms of processing conditions, LCP reinforcement aspect ratio, fibril diameter, and LCP/PE modulus ratio.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...