Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0428
    Keywords: Type 2 (non-insulin-dependent) diabetes mellitus ; impaired glucose tolerance ; glucose tolerance ; oral glucose tolerance test ; epidemiology ; height ; body mass index ; waist/hip ratio
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary In a prospective study concerning the pathogenesis of impaired glucose tolerance and Type 2 (non-insulindependent) diabetes mellitus, 346 subjects with no clinical history of diabetes were given a standard 75 g oral glucose tolerance test. The expected positive associations between 120-min plasma glucose concentration and age and body mass index were observed in both sexes and between 120-min plasma glucose and waist/hip ratio in male subjects. An unexpected negative correlation was found between 120-min plasma glucose and height in both sexes (r = − 0.23, (95% confidence interval, − 0.38− − 0.07) p〈0.007 for male subjects and r = − 0.24, (− 0.37− − 0.11) p〈0.006 for female subjects). These negative associations with height remained significant after controlling for age and body mass index in male subjects but not in female subjects. In the latter a highly significant negative relationship of height with age was recorded (r = − 0.33, (− 0.45− − 0.20) p〈0.0001). Comparison between individuals with impaired glucose tolerance and control subjects matched for sex, age and body mass index showed that subjects with impaired glucose tolerance are significantly shorter. Mean (± SEM) height in the male subjects with impaired glucose tolerance (n = 29) was 173.4 ± 1.1 cm vs 176.9 ± 1.3 cm in control subjects, p = 0.02. In the female subjects(n = 39)mean(±SEM)height was 159.4±1.0 cm vs 162.4±1.0 cm in control subjects, p = 0.02. The negative relationship between height and glucose tolerance is a new epidemiological observation which has not been previously reported. One possible reason for this is that the most commonly used anthropometric index, body mass index, eliminates height as an independent analytical variable.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-1424
    Keywords: KATP channels ; Chemical modification ; Sulfhydryl group ; Basic amino acids ; Pancreatic β-cells
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract The effects of several group-specific chemical reagents were examined upon the activity of the ATP-sensitive potassium (KATP) channel in the CRI-G1 insulin-secreting cell line. Agents which interact with the sulfhydryl moiety (including 1 mM N-ethylmaleimide (NEM), 1 mM 5,5′-dithio-bis-(2-nitrobenzoic acid) (DNTB) and 1 mm o-iodobenzoate) produced an irreversible inhibition of KATP channel activity when applied to the intracellular surface of excised inside-out patches. This inhibition was substantially reduced when attempts were made to eliminate Mg2+ from the intracellular compartment. ATP 50 μm and 100 μm tolbutamide were each shown to protect against the effects of these reagents. The membrane impermeable DNTB was significantly less effective when applied to the external surface of outside-out patches. Agents which interact with peptide terminal amine groups and ɛ amino groups of lysine [1 mm methyl acetimidate and 1 mm trinitrobenzene sulfonic acid (TNBS)] and also the guanido group of arginine (1 mm methyl glyoxal) produced a Mg2+-dependent irreversible inhibition of KATP channel activity which could be prevented by ATP but not tolbutamide. The irreversible activation of the KATP channel produced by the proteolytic enzyme trypsin was prevented only when methyl glyoxal and methyl acetimidate were used in combination to inhibit channel activity. Radioligand binding studies showed that the binding of 3H glibenclamide was unaffected by any of the above agents with the exception of TNBS which completely inhibited binding with a EC50 of 307 ±6 μm. These results provide evidence for the presence of essential sulfhydryl (possibly cysteine), and basic amino acid (possibly lysine and arginine) residues associated with the normal functioning of the KATP channel. Furthermore, we believe that the sulfhydryl group in question is situated at the internal surface of the membrane, possibly near to the channel pore.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...