Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Cell & tissue research 243 (1986), S. 91-99 
    ISSN: 1432-0878
    Keywords: Teeth ; Calcification ; Adenosine triphosphatase ; Calcium-alkaline phosphatase ; Rat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary Enzymatic activities of calcium-magnesium dependent adenosine triphosphatase (Ca-ATPase) and nonspecific alkaline phosphatase (ALPase) were localized at the initial calcification sites of dentin and enamel of rat incisor teeth using electron-microscopic cytochemistry. Ca-ATPase was localized in the Golgi cisternae, cytoplasmic vesicles and along the outer surface of the presecretory and secretory ameloblasts, whereas it was totally absent from the odontoblasts in the pulp. Inversely, ALPase reaction was localized along the outer surface of the odontoblasts, but almost completely absent from the ameloblasts. Diffuse extracellular reactions of both enzymes were distributed throughout the unmineralized fibrous matrix of mantle dentin in which a large number of matrix vesicles were scattered. Both Ca-ATPase and ALPase reactions, which appeared in the matrix vesicles in the process of formation of mantle dentin, became most conspicuous at the site of initial dentin calcification. At this stage, an intense Ca-ATPase reaction also appeared along some of the collagen fibrils adjacent to the reactive matrix vesicles. No ALPase reaction was localized along these Ca-ATPase reactive collagen fibrils. Our observations suggest strongly that Ca-ATPase in the matrix vesicles originates from the inner enamel epithelium and/or preameloblasts whereas ALPase originates from the odontoblasts in the pulp. The importance of the coexistence of both enzymes for the control of initial calcification of dental hard tissues is suggested.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    Journal of Biomedical Materials Research 17 (1983), S. 261-274 
    ISSN: 0021-9304
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine , Technology
    Notes: Deposits on soft contact lenses of high water content were investigated morphologically and chemically and compared with those on conventional soft contact lenses of poly(2-hydroxyethyl methacrylate). The material of the lenses examined in this investigation was the crosslinked copolymer of methyl methacrylate and N-vinylpyrrolidone with a water content higher than 70%. Morphologically, the deposits on the lenses with high water content were found to have no characteristics distinguishable from those on conventional lenses. By the electron microscopic observation of the cross section of a lens that had become opaque, it was confirmed that the deposit was on the lens surface and that no deposit was within the lens. Some spots on the lenses were recognized as colonies of microorganisms, but the majority of the spots had no involvement by microorganisms. Surface analysis with Fourier transform infrared spectrometer (FT-IR) confirmed that the main component of the filmy deposit was protein. Protein was detected in most of the deposits. The amino acid compositions of the proteins were found to be close to that of lysozyme. From the elemental analysis of several spots, silicon, aluminum, iron, and some other elements were detected. The structural analysis of some spots by a laser Raman microprobe (MOLE) revealed the existence of lipids. In several cases, the deposits were found to have grown around a defect of the lens surface. A mechanism for the formation of deposits is suggested.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...