Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Oxidation of metals 35 (1991), S. 139-173 
    ISSN: 1573-4889
    Keywords: internal oxidation ; HfO2 ; solubility product ; linear kinetics ; oxygen trapping
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract The internal oxidation of some binary Nb-Hf and several commercial Nb alloys containing Hf was studied at 1568 and 1755°C in oxygen pressures ranging from 5×10 −5 to 1×10−3 torr.The reaction kinetics were linear, suggesting that diffusion of oxygen in the substrate was not rate-controlling. The dependence of the reaction rate on oxygen pressure was linear also. Well-defined reaction fronts were observed at higher pressures and the lower temperature, whereas ill-defined fronts occurred at lower pressures and at the higher temperature. The solubility product was much higher than normally encountered in Wagnerian-type behavior and gave rise to varying solute content across the internal-reaction zone. The solute-concentration profiles (EPMA/WDS) of the matrix between particles exhibited a sigmoidal shape for well-defined reaction fronts, whereas the profiles showed a gradual decrease in solute with distance near the front for ill-defined fronts, dropping fairly abruptly at the metal/gas interface. The solute concentration never reached zero at the surface for any condition studied. In contrast to classical, Wagnerian behavior, solute continued to precipitate out after the reaction zone had passed, leading to a variation in the mole fraction of oxide in the zone. SEM/EDXA and XRD showed that precipitation occurred by the formation of “precursors” (Hf-rich regions surrounded by Hf-depleted regions), followed by precipitation of tetragonalHfO2,which in some cases transformed to monoclinicHfO2 and subsequently coarsened. The precipitate morphology varied with solute concentration, temperature, oxygen pressure, and location within the reaction zone. High temperature and high oxygen pressure favored a Widmanstätten structure, whereas low temperature and low oxygen pressure favored a spheroidal precipitate structure. Widmanstätten plates were observed to “spheroidize” at longer times, suggesting that the interfacial energy between particles and matrix was very high. The presence of a small amount of Y (0.11 w/o in C129) always resulted in spheroidal particles. It appears that Y markedly increased the particle/matrix interfacial energy. Microhardness profiles showed decreasing values with distance into the sample for some conditions and alloys but increasing values in other cases. Hardness increases in the substrate in advance of the interface showed that oxygen activity did not reach zero at the reaction front, once again contrary to classical behavior but consistent with high solubility products of the oxide. Results are analyzed in terms of oxygen-trapping by reactive solutes as noted in the literature for both lattice-parameter measurements and oxygen diffusivity studies.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Apoptosis 3 (1998), S. 83-88 
    ISSN: 1573-675X
    Keywords: Apoptosis ; TNF ; TRAIL
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract The TNF ligand family member termed TRAIL has been shown to induce apoptosis in a wide variety of transformed cell lines. The normal functions of this cytokine in vivo remain, however, relatively unknown. The complexity of this biological system has now increased unexpectedly with the identification of four distinct receptors for TRAIL, two of which have cytoplasmic death domains. This review will describe the known biological effects of TRAIL, as well as the structure and possible functions of its recently identified receptors.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Weinheim : Wiley-Blackwell
    Journal of High Resolution Chromatography 3 (1980), S. 355-356 
    ISSN: 0935-6304
    Keywords: Gas-liquid chromatography (GLC) ; Open tubular glass capillary columns ; Blended stationary phases ; Liquid crystals ; Polycyclic aromatic hydrocarbons (PAH) ; Chemistry ; Analytical Chemistry and Spectroscopy
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Weinheim : Wiley-Blackwell
    Journal of High Resolution Chromatography 6 (1983), S. 444-445 
    ISSN: 0935-6304
    Keywords: Gas chromatography ; Open-tubular columns ; Reduced diameter ; High pressure ; Coating reservoir ; Chemistry ; Analytical Chemistry and Spectroscopy
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    International Journal of Chemical Kinetics 16 (1984), S. 1151-1160 
    ISSN: 0538-8066
    Keywords: Chemistry ; Physical Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The absolute rate constant for the OH + HCl reaction has been measured from 240 to 295 K utilizing the techniques of laser/flash photolysis-resonance fluorescence. The HCl concentrations were monitored continuously by ultraviloet and infrared spectrophotometry. The results can be fit to the following Arrhenius expression: \documentclass{article}\pagestyle{empty}\begin{document}$$k_1 = (4.6{\rm } \pm {\rm }0.3){\rm } \times {\rm }10^{ - 12} \exp [- (500{\rm } \pm {\rm }60)/T{\rm cm}^3 /{\rm molecule} \cdot {\rm s}$$\end{document} The rate constant values obtained in this study are 20-30% larger than those recommended previously for modeling of stratospheric chemistry.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    International Journal of Chemical Kinetics 16 (1984), S. 41-55 
    ISSN: 0538-8066
    Keywords: Chemistry ; Physical Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The absolute rate constants for the reactions of OH + HO2NO2 (1) and OH + HNO3 (2) have been measured with the technique of flash photolysis resonance fluorescence over the temperature ranges of 240-330 K at 760 torr He for reaction (1) and of 240-370 K at 50 and 760 torr He for reaction (2). Reactant concentrations were monitored continuously by ultraviolet and infrared spectrophotometry. The data can be fitted to the following Arrhenius expressions: \documentclass{article}\pagestyle{empty}\begin{document}$$ k_1 = \left( {5.9 \pm 0.4} \right) \times 10^{ - 13} \exp \left[ {{{\left( {650 \pm 30} \right)} \mathord{\left/ {\vphantom {{\left( {650 \pm 30} \right)} T}} \right. \kern-\nulldelimiterspace} T}} \right]{{{\rm cm}^{\rm 3} } \mathord{\left/ {\vphantom {{{\rm cm}^{\rm 3} } {{\rm molecule} \cdot {\rm s}}}} \right. \kern-\nulldelimiterspace} {{\rm molecule} \cdot {\rm s}}} $$\end{document} \documentclass{article}\pagestyle{empty}\begin{document}$$ {\rm CH}_{\rm 3} {\rm SiD}_{\rm 3} \mathop {\longrightarrow} \limits^3 {\rm CH}_{\rm 2} \raise1pt\hbox{=\kern-3.45 pt=} {\rm SiD}_{\rm 2} \left( {0.14} \right) $$\end{document} \documentclass{article}\pagestyle{empty}\begin{document}$$ k_2 = \left( {8.3 \pm 0.9} \right) \times 10^{ - 15} \exp \left[ {{{\left( {850 \pm 40} \right)} \mathord{\left/ {\vphantom {{\left( {850 \pm 40} \right)} T}} \right. \kern-\nulldelimiterspace} T}} \right]{{{\rm cm}^{\rm 3} } \mathord{\left/ {\vphantom {{{\rm cm}^{\rm 3} } {{\rm molecule} \cdot {\rm s}}}} \right. \kern-\nulldelimiterspace} {{\rm molecule} \cdot {\rm s}}} $$\end{document} These results are in very good agreement with recent studies of reaction (2), and also of reaction (1) at 295 K.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...