Bibliothek

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • 2000-2004  (1)
  • 1995-1999  (3)
  • Cholinergic neuron  (2)
  • Gene expression  (2)
  • 1
    ISSN: 1432-1440
    Schlagwort(e): Angiotensin I-converting enzyme ; Gene expression ; Sodium chloride ; Heart ; Inbred rats
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Medizin
    Notizen: Abstract We have recently shown that the angiotensin I converting enzyme (ACE) gene is linked to NaCl-loaded blood pressure in the stroke-prone spontaneously hypertensive rat (SHRSP), and that high-NaCl loading selectively stimulates ACE in the aorta of SHRSP but not in normotensive Wistar-Kyoto (WKY) rats. We therefore investigated the relationship between cardiac ACE and the development of hypertension and left ventricular hypertrophy in response to normal- and high-NaCl diet in these rats. ACE mRNA and ACE activity were measured in left ventricular tissue after completion of hemodynamic characterization of the animals. While SHRSP rats increased blood pressure (P〈0.0001) and heart rate (P〈0.005) in response to high NaCl, blood pressure remained unchanged in WKY. Similarly, relative left ventricular weight increased only in SHRSP after high NaCl (P〈0.002). A significant two- to threefold increase of cardiac ACE mRNA and fourfold stimulation of ACE enzyme activity in response to high NaCl was found in both WKY and SHRSP rats (P〈0.005). The induction of ACE gene expression was significantly more pronounced in SHRSP compared to WKY (P〈0.02), whereas no significant strain differences in left ventricular ACE activity were found after either normal- or high-NaCl diet. Thus, arterial blood pressure and left ventricular weight remained unchanged in the WKY rats despite the activation of left ventricular ACE activity after high-NaCl exposure. These results demonstrate that left ventricular ACE activity is equally upregulated in response to high-NaCl in the normotensive and hypertensive strain, independently from the development of hypertension. We conclude that the pretranslational induction of left ventricular ACE with high-NaCl loading may be important both for the regulation of cardiac angiotensins and kinins and for local therapeutic ACE inhibition in the heart during high-salt status.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Digitale Medien
    Digitale Medien
    Springer
    Extremophiles 4 (2000), S. 321-331 
    ISSN: 1433-4909
    Schlagwort(e): Key words Cold shock ; Low-temperature adaptation ; Psychrophile ; Adaptive mechanisms ; Antarctic Archaea ; Gene expression ; Protein structure ; Review
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Biologie
    Notizen: Abstract We live on a cold planet where more than 80% of the biosphere is permanently below 5°C, and yet comparatively little is known about the genetics and physiology of the microorganisms inhabiting these environments. Based on molecular probe and sequencing studies, it is clear that Archaea are numerically abundant in diverse low-temperature environments throughout the globe. In addition, non-low-temperature-adapted Archaea are commonly exposed to sudden decreases in temperature, as are other microorganisms, animals, and plants. Considering their ubiquity in nature, it is perhaps surprising to find that there is such a lack of knowledge regarding low-temperature adaptation mechanisms in Archaea, particularly in comparison to what is known about archaeal thermophiles and hyperthermophiles and responses to heat shock. This review covers what is presently known about adaptation to cold shock and growth at low temperature, with a particular focus on Antarctic Archaea. The review highlights the similarities and differences that exist between Archaea and Bacteria and eukaryotes, and addresses the potentially important role that protein synthesis plays in adaptation to the cold. By reviewing the present state of the field, a number of important areas for future research are identified.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    ISSN: 1432-0878
    Schlagwort(e): Choline acetyltransferase ; Cholinergic neuron ; Visual system ; Bolwig's organ ; Immunocytochemistry ; In situ hybridization ; Drosophila melanogaster (Insecta)
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Biologie , Medizin
    Notizen: Abstract Choline acetyltransferease (ChAT) is the enzyme catalyzing the biosynthesis of acetylcholine and is considered to be a phenotypically specific marker for cholinergic neurons. We have examined the distribution of ChAT-expressing neurons in the larval nervous system of Drosophila melanogaster by three different but complementary techniques: in situ hybridization with a cRNA probe to ChAT messenger RNA, immunocytochemistry using a monoclonal anti-ChAT antibody, and X-gal staining of transformed animals carrying a reporter gene composed of 7.4 kb of 5′ flanking DNA from the ChAT gene fused to a lacZ reporter gene. All three techniques demonstrated ChAT-expressing neurons in the larval visual system. In embryos, the photoreceptor organ (Bolwig's organ) exhibited strong cRNA hybridization signals. The optic lobe of late third-instar larvae displayed ChAT immunoreactivity in Bolwig's nerve and a neuron close to the insertion site of the optic stalk. This neuron's axon ran in parallel with Bolwig's nerve to the larval optic neuropil. This neuron is likely to be a first-order interneuron of the larval visual system. Expression of the lacZ reporter gene was also detected in Bolwig's organ and the neuron stained by anti-ChAT antibody. Our observations indicate that acetylcholine may be a neurotransmitter in the larval photoreceptor cells as well as in a first-order interneuron in the larval visual system of Drosophila melanogaster.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    ISSN: 1432-0878
    Schlagwort(e): Key words: Choline acetyltransferase ; Cholinergic neuron ; Visual system ; Bolwig’s organ ; Immunocytochemistry ; In situ hybridization ; Drosophila melanogaster (Insecta)
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Biologie , Medizin
    Notizen: Abstract. Choline acetyltransferase (ChAT) is the enzyme catalyzing the biosynthesis of acetylcholine and is considered to be a phenotypically specific marker for cholinergic neurons. We have examined the distribution of ChAT-expressing neurons in the larval nervous system of Drosophila melanogaster by three different but complementary techniques: in situ hybridization with a cRNA probe to ChAT messenger RNA, immunocytochemistry using a monoclonal anti-ChAT antibody, and X-gal staining of transformed animals carrying a reporter gene composed of 7.4  kb of 5′ flanking DNA from the ChAT gene fused to a lacZ reporter gene. All three techniques demonstrated ChAT-expressing neurons in the larval visual system. In embryos, the photoreceptor organ (Bolwig’s organ) exhibited strong cRNA hybridization signals. The optic lobe of late third-instar larvae displayed ChAT immunoreactivity in Bolwig’s nerve and a neuron close to the insertion site of the optic stalk. This neuron’s axon ran in parallel with Bolwig’s nerve to the larval optic neuropil. This neuron is likely to be a first-order interneuron of the larval visual system. Expression of the lacZ reporter gene was also detected in Bolwig’s organ and the neuron stained by anti-ChAT antibody. Our observations indicate that acetylcholine may be a neurotransmitter in the larval photoreceptor cells as well as in a first-order interneuron in the larval visual system of Drosophila melanogaster.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...