Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1572-9001
    Keywords: Cobalt complexes ; potassium squarate ; crystal structure ; molecular structure
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract Compound (I), idealized as Br4Co3O14N8C16H41 (see text), crystallizes in the triclinic space groupP¯ 1 (No. 2) with cell constants ofa=7.4470(7),b=7.9648(4),c=15.2223(8),α=96.338(4)ℴΒ=93.504(6)ℴ,γ=112.894(6)ℴ,V=821.328 å3, and d(calc; MW=1065.97,z=1)=2.155 gm-cm−3. Data (3880 total reflections) were collected over the range 2ℴ ≤ 2θ ≤ 55ℴ and corrected for absorption (Μ=63.69 cm−1) using data from Psi scans. The unexpectedly isolated compound contains a [cis-Co(en)2Br(OH)]+ cation, while the anion contains a central Co(III) surrounded by two mondentate,trans-squarato ligands, twotrans-hydroxo, and two waters. The waters and hydroxy ligands were identified by determining, experimentally, the presence and positions of their respective hydrogens. Given the need for overall electroneutrality, one squarato ligand must be a dianion (Sq2−) and the other a monoanion (SqH−); however, since the ion bearing the squarato ligands sits at an inversion center, the hydrogen of the latter must be disordered. Refinement of the heavy atoms with anisotropic thermal parameters and fixed hydrogen positions (B's fixed at) led to the finalR(F) andR W(F) factors of 0.036 and 0.042, respectively. (I) was obtained during efforts to prepare [Co(en)2(squarate)]Br by the displacement of two chloro ligands from the coordination sphere of [cis-Co(en)2Cl2]Cl by K2 (squarate) followed by addition of NaBr. Compound (I) appears to be the first example of a coordination compound in which squarate2− and squarate H− anions are present as ligands to a transition metal ion. A search of the Cambridge file (to 1992) produced no known examples of Co(III) squarates. Thus, (I) appears to also be the first example of its kind.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1572-9001
    Keywords: Conglomerate crystallization ; cobalt complexes ; X-ray crystallography
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract A room temperature water solution of (I) crystallizes as a racemate, space groupP2 1/n with lattice constantsa=7.737(6),b=10.694(5),c=15.097(6) Å, andβ=102.83(5)°;V=1218.05 Å3 andd (calc; M.W.=337.24, Z=4) = 1.642 g cm−3. A total of 2381 data were collected over the range 4° ≤ 2θ 〈 50°; of these, 1452 (independent and withI ≥ 3σ(I)) were used in the structural analysis. Data were corrected for absorption (μ = 15.76 cm−1), and the relative transmission coefficients ranged from 0.8976 to 0.9984. Refinement led to the finalR(F) andR w(F) residuals of 0.0858 and 0.1116. A room temperature water solution of (II) crystallizes as a racemate in space group P21/c with lattice constantsa=6.638(3),b=11.425(8),c=15.147(16) Å, andβ=93.27(6)°; F=1146.8 Å andd (calc; M.W.=323.2,Z=4) = 1.872 g cm−3. A total of 2200 data were collected over the range 4° ≤ 2θ 〈 50°; of these, 1918 (independent and withI ≥ 3σ(I)) were used in the structural analysis. Data were corrected for absorption (μ=16.94 cm−1), and the relative transmission coefficients ranged from 0.9049 to 0.9967. Refinement led to the finalR(F) andR w(F) residuals of 0.0231 and 0.0279. The chirality symbol for the particular enantiomer of (I) refined here is ∧ (δδ), while for (II) the chirality symbol is ∧(δλ), which means that in the latter compound one of the en rings is in a higher energy conformation. We attribute this result to competitive intramolecular hydrogen-bonded interactions between the — NH2 hydrogens of the en ligands and the oxygens of the -NO2 and -SO3 ligands, strengths which are enhanced by coercing a change in sign of the torsional angle of one en ringa motion which permits both oxo ligands to form stronger hydrogen bonds while retaining proper O ⋯ O contacts. This phenomenon is not observed in (I) since the azide ligand does not compete with -SO3 for such hydrogen-bonded interactions, and nonbonded pair repulsions can be minimized without affecting the ability of — SO3 oxygens to form strong intramolecular hydrogen bonds.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...