Bibliothek

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • CHEMOPREVENTION  (1)
  • Colonic (Na++K+)-ATPase  (1)
  • 1
    Digitale Medien
    Digitale Medien
    Springer
    Journal of molecular medicine 66 (1988), S. 599-600 
    ISSN: 1432-1440
    Schlagwort(e): Colonic (Na++K+)-ATPase ; Specific ouabain binding ; Lipoxygenase pathway products ; Superoxide radicals
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Medizin
    Notizen: Summary The effects of lipoxygenase products (5-, 12-, 15-HETE, LTB4) and superoxide radicals on human colonic (Na++K+)-ATPase and specific ouabain binding were measured. No significant inhibition in concentrations up to 3 × 10−5 M was observed. The results are discussed with regard to a possible role of lipoxygenase products and radicals in the pathogenesis of water and electrolyte disturbances in various diarrheal states including inflammatory bowel disease.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    ISSN: 1573-2568
    Schlagwort(e): BASE HYDROXYLATION ; BILE ACIDS ; AMINOSALICYLIC ACID ; N-ACETYL-AMINOSALICYLIC ; SALICYLATE ; CHEMOPREVENTION ; COLON CANCER ; INFLAMMATORY BOWEL DISEASE ; COLONIC DNA MODEL
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Medizin
    Notizen: Abstract Bile acids are believed to be involved in theformation of colonic cancer, and 5-aminosalicylic acidand other salicylates may have a protective role. Theprecise mechanisms of both actions are not known, but modifications (stimulation or inhibition)of basal or oxygen-radical induced DNA basehydroxylation as potential early events in tumorformation by these compounds may be involved in suchactions. We, therefore, investigated whether: (1) bile acidsin concentrations as they occur systemically orintraluminally are able to enhance basal orOH-radical-stimulated base hydroxylation in DNA fromcalf thymus; (2) 5-aminosalicylic acid, its main intestinalmetabolite N -acetyl-aminosalicylic acid and salicylate,the main aspirin metabolite, are able to inhibit thishydroxylation; and (3) DNA from calf thymus can be used as a model by comparing its basecomposition and hydroxylation with DNA from normal humancolonic mucosa. We found an enhancement of theOH-radical-induced DNA hydroxylation especially 8-OH adenine with 214.0%. On the other hand 5-ASA,N -acetylASA, and salicylate showed aconcentration-dependent inhibition of OH-stimulatedhydroxylation with IC50 between 0.04 ±0.01 mM (X ± SD) and 1.3 ± 0.1 mM. No effects were observed onbasal hydroxylation. Electron spin resonancespectroscopy studies showed reduction of thecorresponding base signals pointing to a scavengermechanism. In DNA isolated from normal human colonic mucosa (N =7) a similar base distribution was found as in calfthymus; hydroxylation was 1.0% in both systems. From ourresults we conclude that DNA from calf thymus may serve as a model for human colonic mucosalDNA and that one of the carcinogenic actions of bileacids may be enhancement of oxygen-radical-induced DNAbase hydroxylation, especially 8-OH adenine. The absence of effects under unstimulatedconditions supports their role as cocarcinogens. Theconcentration-dependent inhibition of OH-stimulated DNAhydroxylation by 5-ASA, salicylate, and N-acetyl-ASA may be a possible mechanism ofchemoprevention.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...