Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Control Volume Method  (2)
  • Chemistry  (1)
  • 1
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The fermentation kinetics of the homofermentative organism Lactobacillus delbrueckii in a glucose-yeast extract medium is studied in both batch and continuous culture under conditions of controlled pH. From a graphical analysis of the batch data, a mathematical model of the process is derived which relates bacterial growth, glucose utilization, and lactic acid formation. The parameters in the model represent the activity of the organism and are a function of pH, having a maximum value at about 5.90. In a continuous stirred tank fermentor (CSTF), the effect of pH, feed concentration, and residence time is observed. The feed medium is a constant ratio of two parts glucose to one part yeast extract plus added mineral salts. An approximate prediction of the steady-state behavior of the CSTF can be made using a method based on the kinetic model derived for the batch case. In making step changes from one steady state to another, the transient response is observed. Using the kinetic model to simulate the transient period, the calculated behavior qualitatively predicts the observed response.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 6 (1986), S. 113-127 
    ISSN: 0271-2091
    Keywords: Wind Engineering ; Control Volume Method ; Wind Flow Simulation ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: The steady Navier-Stokes equation is solved to simulate the wind-flow environment of three-dimensional configurations of buildings. The method assumes an incident wind described by a power-law velocity profile. A new method for controlling the two-part nested solution iteration is introduced. The simulation is compared to some published wind-tunnel measurements.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 4 (1984), S. 25-41 
    ISSN: 0271-2091
    Keywords: Architectural Wind-flow ; Environmental Problems ; Random Vortex Method ; Control Volume Method ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Numerical solutions to the Navier-Stokes equation may provide designers with predictions of the wind environment of buildings under design. To investigate this possibility, two complementary solution procedures are implemented for two-dimensional geometry: a random vortex method to depict the flow evolution, and a control volume method to depict the steady flow field. These are both illustrated by specific application to the case of a building form with a roof of arbitrary pitch.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...