Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-1424
    Keywords: Cortical collecting duct ; Flufenamic acid ; Amiloride ; Adenine nucleotides ; cGMP dependent protein kinase ; Patch clamp
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract We recently reported that M-1 mouse cortical collecting duct cells show nonselective cation (NSC) channel activity (Proc. Natl. Acad. Sci. USA 89:10262–10266, 1992). In this study, we further characterize the M-1 NSC channel using single-channel current recordings in excised inside-out patches. The M-1 NSC channel does not discriminate between Na+, K+, Rb+, Cs+, and Li+. It has a linear I-V relation with a conductance of 22.7±0.5 pS (n=78) at room temperature. The Pcation/ Panion ratio is about 60 and there is no measurable conductance for NMDG, Ca2+, Ba2+, and Mn2+. Cytoplasmic calcium activates the M-1 NSC channel at a threshold of 10−6 m and depolarization increases channel activity (NP o ). Cytoplasmic application of adenine nucleotides inhibits the M-1 NSC channel. At doses of 10−4 m and 10−3 m, ATP reduces NP o by 23% and 69%, respectively. Furthermore, since ADP (10−3 m) reduces NP o by 93%, the inhibitory effect of adenine nucleotides is not dependent on the presence of a γ-phosphoryl group and therefore does not involve protein phosphorylation. The channel is not significantly affected by 8-Br-cGMP (10−4 m) or by cGMP-dependent protein kinase (10−7 m) in the presence of 8-Br-cGMP (10−5 m) and ATP (10−4 m). The NSC channel is not sensitive to amiloride (10−4 m cytoplasmic and/or extracellular) but flufenamic acid (10−4 m) produces a voltage-dependent block, reducing NP o by 35% at depolarizing voltages and by 80% at hyperpolarizing voltages. We conclude that the NSC channel of M-1 mouse cortical collecting duct cells belongs to an emerging family of calcium-activated and nucleotide-sensitive nonselective cation channels. It does not contribute to amiloride-sensitive sodium absorption and is unlikely to be a major route for calcium entry. The channel is normally quiescent but may be activated under special physiological conditions, e.g., during volume regulation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 9 (1989), S. 275-287 
    ISSN: 0271-2091
    Keywords: Curved pipe flow ; Entrance flow ; Finite element method ; Penalty function method ; Experimental validation ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: A standard Galerkin finite element penalty function method is used to approximate the solution of the three-dimensional Navier-Stokes equations for steady incompressible Newtonian entrance flow in a 90° curved tube (curvature ratio δ = 1/6) for a triple of Dean numbers (κ = 41, 122 and 204). The computational results for the intermediate Dean number (κ = 122) are compared with the results of laser-Doppler velocity measurements in an equivalent experimental model. For both the axial and secondary velocity components, fair agreement between the computational and experimental results is found.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 8 (1988), S. 351-363 
    ISSN: 0271-2091
    Keywords: Navier-Stokes equations ; Finite element method ; Viscous flow ; Free boundary flow ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: In this paper a total linearization method is derived for solving steady viscous free boundary flow problems (including capillary effects) by the finite element method. It is shown that the influence of the geometrical unknown in the totally linearized weak formulation can be expressed in terms of boundary integrals. This means that the implementation of the method is simple. Numerical experiments show that the iterative method gives accurate results and converges very fast.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...