Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 16 (1993), S. 66-70 
    ISSN: 1432-0789
    Keywords: VA mycorrhiza ; Glomus intraradices ; Hyphal N transport ; Cucumis sativus ; 15N recovery ; Root compartment
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Transport of N by hyphae of a vesicular-arbuscular mycorrhizal fungus was studied under controlled experimental conditions. The N source was applied to the soil as 15NH inf4 sup+ or 15NO inf3 sup- . Cucumis sativus was grown for 25 days, either alone or in symbiosis with Glomus intraradices, in containers with a hyphal compartment separated from the root compartment by a fine nylon mesh. Mineral N was then applied to the hyphal compartment as 15NH inf4 sup+ or 15NO inf3 sup- at 5 cm distance from the root compartment. Soil samples were taken from the hyphal compartment at 1, 3 and 5 cm distance from the root compartment at 7 and 12 days after labelling, and the concentration of mineral N in the samples was measured from 2 M KCl extracts. Mycorrhizal colonization did not affect plant dry weight. The recovery of 15N in mycorrhizal plants was 38 or 40%, respectively, when 15NH inf4 sup+ or 15NO inf3 sup- was applied. The corresponding values for non-mycorrhizal plants were 7 and 16%. The higher 15N recovery observed in mycorrhizal plants than in non-mycorrhizal plants suggests that hyphal transport of N from the applied 15N sources towards the host plant had occurred. The concentration of mineral N in the soil of hyphal compartments was considerably less in mycorrhizal treatments than in controls, indicating that the hyphae were able to deplete the soil for mineral N.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-5036
    Keywords: 15N ; Cucumis sativus ; Glomus intraradices ; hyphal N transport ; plant N status ; VA mycorrhiza
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Cucumis sativus L. cv. Aminex (F1 hybrid) was grown alone or in symbiosis with Glomus intraradices Schenck and Smith in containers with two hyphal compartments (HCA and HCB) on either side of a root compartment (RC) separated by fine nylon mesh. Plants received a total of either 100, 200 or 400 mg N which were applied gradually to the RC during the experiment. 15N was supplied to HCA 42 d after plating, at 50 mg 15NH4 +-N kg−1 soil. Lateral movement of the applied 15N towards the roots was minimized by using a nitrification inhibitor and a hyphal buffer compartment. Non-mycorrhizal controls contained only traces of 15N after a 27 d labelling period irrespective of the amount of N supplied to the RC. In contrast, 49, 48 and 27% of the applied 15N was recovered in mycorrhizal plants supplied with 100, 200 and 400 mg N, respectively. The plant dry weight was increased by mycorrhizal colonization at all three levels of N supply, but this effect was strongest in plants of low N status. The results indicated that this increase was due partly to the improved inflow of N via the external hyphae. Root colonization by G. intraradices was unaffected by the amount of N supplied to the RC, while hyphal length increased in HCA compared to HCB. Although a considerable 15N content was detected in mycorrhizal roots adjacent to HCB, only insignificant amounts of 15N were found in the external hyphae in HCB. The external hyphae depleted the soil of inorganic N in both HCA and HCB, while the concentration of soil mineral N was still high in non-mycorrhizal containers at harvest. An exception was plants supplied with 400 mg N, where some inorganic N was present at 5 cm distance from the RC in HCA. The possibility of a regulation mechanism for hyphal transport of N is discussed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...