Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 0948-5023
    Keywords: Keywords Human Carbonic Anhydrase II ; Semiempirical MO Theory ; AM1 ; Enzyme Catalysis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract The approach of CO2 to a series of active site model complexes of human carbonic anhydrase   II (HCAII) and its catalytic hydration to bicarbonate anion have been investigated using semiempirical MO theory (AM1). The results show that direct nucleophilic attack of zinc-bound hydroxide to the substrate carbon occurs in each model system. Further rearrangement of the bicarbonate complex thus formed via a rotation-like movement of the bicarbonate ligand can only be found in active site model systems that include at least one additional water molecule. Further refinement of the model complex by adding a methanol molecule to mimic Thr-199 makes this process almost activationless. The formation of the final bicarbonate complex by an internal (intramolecular) proton transfer is only possible in the simplest of all model systems, namely {[Im3Zn(OH)]+·CO2}. The energy of activation for this process, however, is 36.8 kcal·mol−1 and thus too high for enzymatic catalysis. Therefore, we conclude that within the limitations of the model systems presented and the level of theory employed, the overall mechanism for the formation of the bicarbonate complex comprises an initial direct nucleophilic attack of zinc-bound hydroxide to carbon dioxide followed by a rotation-like rearrangement of the bicarbonate ligand via a penta-coordinate Zn2+ transition state structure, including the participation of an extra active site water molecule.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1434-1948
    Keywords: Cytochrome c ; Chromium(v) ; Saturation kinetics ; Separation of K and kET ; Volume profile ; Kinetics ; Chemistry ; General Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The irreversible outer-sphere electron-transfer reaction between trans-bis(2-ethyl-2-hydroxybutanoato(2-))oxochromate(v) and cytochrome cII was investigated as a function of pH, concentration, temperature and pressure. The plot of the observed pseudo-first order rate constant as a function of the CrV concentration shows a clear trend towards saturation at higher CrV concentrations, from which the precursor formation constant and the electron-transfer rate constant could be separated (K = 37 ± 5 M-1 and kET = 1510 ± 180 s-1 at pH 4.8 and 279 K). In the low CrV concentration range the second-order electron-transfer rate contants were measured as a function of temperature (ΔH# = 20.9 ± 0.6 kJ mol-1; ΔS# = -79.9 ± 2.1 J K-1 mol-1; ΔG# (279 K) = 43.2 kJ mol-1). High-pressure experiments were performed at two different pH values. The kinetic (stopped-flow) and thermodynamic (electrochemical) measurements as a function of pressure enabled the construction of a volume profile for the system at 279 K. The activation volumes for the redox process are -9.2 ± 0.2 (pH 5.0) and -11.1 ± 0.8 cm3 mol-1 (pH 4.7), and the overall reaction volumes were estimated to be -7 ± 2 (pH 5.0) and -10 ± 2 cm3 mol-1 (pH 4.7) . The transition state of the redox reaction lies to a large extent on the product side and can be described as “late”. The results are discussed in comparison to earlier measurements using cobalt and ruthenium complexes as reaction partners for cytochrome c.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...