Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 69 (1987), S. 213-219 
    ISSN: 1432-1106
    Keywords: Cortex slices ; Field potentials ; Current source density analysis ; Visual cortex
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The method of one-dimensional current source density (CSD) analysis was applied to field potentials recorded from 350 μm thick slices of the primary visual cortex of rats and cats. Field potentials were elicited by stimulation of the white matter and recorded along trajectories perpendicular to the cortical layers at spatial intervals of 25 to 50 μm. The resulting CSD distributions resembled closely those recorded from the cat visual cortex “in vivo”. The responses with the shortest latency were distinct sinks in layers IV and VI probably reflecting monosynaptic EPSP's from specific thalamic afferents. From layer IV activity was relayed along three major routes: 1. to the supragranular layers via strong local connections to layer III and from there via both short and long range connections to layer II, 2. to targets within layer IV, and 3. to layer V. The source distributions suggest that the projections to layers III and II terminate on the proximal and distal segments, respectively, of apical dendrites of layer III pyramidal cells while the projection to layer V contacts the apical dendrites of layer VI pyramidal cells. These results indicate that all the excitatory pathways that are detectable with the CSD technique in the “in vivo” preparation remain intact in 350 μm thick cortical slices. However, in the slice paired pulse stimulation did not lead to a depression of the response to the second stimulus while this is the case “in vivo”. This might be due to reduced inhibition in the slice which has been reported by several authors.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-1106
    Keywords: Visual cortex ; Current source density analysis ; Field potentials ; Cat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The current source density (CSD) method in its one-dimensional approximation is used to analyze the field potentials in visual areas 18 and 17 of the cat, which were elicited by stimulating electrodes in the optic chiasm (OX), the optic radiation (OR) or in the respective cortical area itself. The CSD analysis reveals the basic pattern of excitatory postsynaptic activity. 1. In both visual areas the basic specific excitatory activity flows along three different intracortical pathways, all starting in layer IV: The first pathway relays activity from layer IV to supragranular pyramidal cells via strong, local connections to layer III and from there through long-distance connections to layer II. The second pathway conveys activity from layer IV to layer V, where it mainly contacts apical dendrites of layer VI pyramidal cells. This infragranular polysynaptic activity is not clearly resolvable into separate components, suggesting that it is conveyed by various groups of axons, among them long-distance horizontal connections. The third pathway has one synaptic relay within layer IV and then conveys activity to layer III. In addition, monosynaptic activity is revealed in layers VI and I. 2. In A 18 one coherent, fast-conducting group of afferents induces this basic activity pattern. In A 17 no such fast conducting input is resolvable; the supragranular activity is induced by a small group of afferents with intermediate conduction velocity, which terminate in the upper part of layer IV. The infragranular activity is induced by afferents with slower and widely scattered conduction velocities, which terminate in the lower part of layer IV. The layer VI input is very prominent in A 17 and also has a wide latency scatter. 3. The supragranular activity is more prominent in A 18 than in A 17 and the respective layers appear thicker, in accordance with anatomy. In A 17 the infragranular activity prevails and layers IV and VI appear very broad, again in accordance with anatomy. 4. Comparison of the CSDs with the original evoked potentials shows that the surface evoked potentials over A 18 reflect the three dipolar sink/source distributions of the coherent monosynaptic activity in layer IV and of the two prominent polysynaptic activities in layers III and II. The widely scattered activity in the lower part of layer IV in A 17 and all infragranular activities in both areas generate smaller, partly closed-field potentials; those are not discernible from the strong far-field potentials which originate from the supragranular activity and — especially in A 17 —from farther distant events.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-1106
    Keywords: Visual cortex ; Development ; Orientation columns ; Deoxyglucose
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary and Conclusions In six dark reared, 4-weak-old kittens visual experience was restricted to contours of a single orientation, horizontal or vertical, using cylindrical lenses. Subsequently, the deoxyglucose method was used to determine whether these artificial raising conditions had affected the development of orientation columns in the visual cortex. After application of the deoxyglucose pulse one hemifield was stimulated with vertical, the other with horizontal contours. Thus, from interhemispheric comparison, changes in columnar systems corresponding to experienced and inexperienced orientations could be determined. The following results were obtained: (1) Irrespective of the restrictions in visual experience, orientation columns develop in areas 17, 18, 19 and in the visual areas of the posterior suprasylvian sulcus. (2) Within area 17, spacing between columns encoding the same orientations is remarkably regular (1 mm), is not influenced by selective experience and shows only slight interindividual variation. (3) In non-striate areas the spacing of columns is less regular and the spatial frequency of the periodicity is lower. (4) The modifiability of this columnar pattern by selective experience is small within the granular layer of striate cortex but substantial in non-granular layers: Within layer IV columns whose preference corresponds to the experienced orientation are wider and more active than those encoding the orthogonal orientation but the columnar grid remains basically unaltered. Outside layer IV the columnar system is maintained only for columns encoding the experienced orientations. The deprived columns by contrast frequently fail to extend into non-granular layers and remain confined to the vicinity of layer IV. (5) These modifications in the columnar arrangement are more pronounced in striate cortex than in non-striate visual areas and, within the former, more conspicuous in the central than in the peripheral representation of the visual field. It is concluded that within layer IV the blue print for the system of orientation columns is determined by genetic instructions: first order cells in layer IV develop orientation selectivity irrespective of experience whereby the preference for a particular orientation is predetermined by the position in the columnar grid. Dependent on experience is, however, the expansion of the columnar system from layer IV into non-granular layers. It is argued that all distortions following selective rearing can be accounted for by competitive interactions between intracortical pathways, the mechanisms being identical to those established for competitive processes in the domain of ocular dominance columns. It is proposed that such experience dependent modifiability of connections between first and second order cells is a necessary prerequisite for the development of orientation selectivity in cells with large and complex receptive fields.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 44 (1981), S. 431-436 
    ISSN: 1432-1106
    Keywords: Cat ; Visual cortex ; Orientation columns ; Deoxyglucose
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Three-dimensional reconstructions of the orientation column system were obtained from the visual cortex of four cats using the deoxyglucose technique. One cat had normal visual experience, one was monocularly deprived and two had selective experience with vertical and horizontal contours, respectively. In areas 17 and 18 orientation columns form a remarkably regular system of equally spaced parallel bands whose trajectory is orthogonal to the borderline between areas 17 and 18. This topographic organization is resistant to manipulations of early visual experience.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...