Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Journal of molecular medicine 71 (1993), S. 286-289 
    ISSN: 1432-1440
    Keywords: (Na+ + K+)-ATPase ; Inflammatory bowel disease ; Diarrhea ; 5-Aminosalicyclic acid ; Olsalazine ; Mesalazine
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Olsalazine (azodisalicylate) and mesalazine (5-aminosalicylic acid) have recently been developed as new treatment modalities for inflammatory bowel disease to avoid sulfasalazine-related side effects. However, there are reports regarding new and hitherto unexpected side effects in some patients receiving olsalazine or mesalazine, such as watery diarrhea. Since sodium pump activities play an important role in the pathogenesis of water and electrolyte disturbances, we investigated the influence of olsalazine and mesalazine on human ileal and colonic (Na+ + K+)-ATPase and its specific [3H]-ouabain binding. We found a concentration-dependent inhibition of ileal and colonic (Na+ + K+)-ATPase by olsalazine with an IC50 of 4.1 mM and 4.8 mM, respectively. Mesalazine inhibited this enzyme in the ileum with an IC50 of 4.5 mM and in the sigmoid colon with an IC50 3.5 mM. In addition, [3H]-ouabain binding was inhibited by mesalazine with an IC50 of 3.6 mM. The maximal inhibition, however, did not exceed 80% under any conditions (up to 10 mM drug concentration). Olsalazine and mesalazine induce inhibition of the ileal and colonic sodium pump activities that may (in addition to other possible mechanisms) mediate impaired water and electrolyte absorption. This is possibly of clinical relevance in patients with severely damaged mucosa. In patients with milder forms of mucosal inflammation, this inhibition most likely is of minor importance because of the great capacitiy of the (Na+ + K+)-ATPase and the incomplete inhibition leaving at least 20% of the enzyme activity intact.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...