Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Life and Medical Sciences  (16)
  • Differentiation  (3)
  • 1
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Biochimica et Biophysica Acta (BBA)/Gene Structure and Expression 824 (1985), S. 209-217 
    ISSN: 0167-4781
    Keywords: (Rat myoblast) ; Cell culture ; Differentiation ; Gene expression ; Histone mRNA subspecie
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology , Chemistry and Pharmacology , Medicine , Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Biochimica et Biophysica Acta (BBA)/Gene Structure and Expression 1009 (1989), S. 177-183 
    ISSN: 0167-4781
    Keywords: (Rat) ; Differentiation ; Gene regulation ; Histone ; Myoblast ; Transcription
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology , Chemistry and Pharmacology , Medicine , Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-0878
    Keywords: Key words Apoptosis ; p53 ; Ischemia ; Enterocytes ; Proliferation ; Differentiation ; ISEL ; Glomeruli ; Mouse (Balb/c) ; Human
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract  Morphological changes associated with apoptosis are closely correlated with the expression of specific proteins. However, the cause-effect relationships between the expression of these proteins and DNA degradation are barely known. For studying expression of apoptosis-related proteins in relation to different degrees of DNA fragmentation, the small intestine with its spatially organized continuum of proliferation, differentiation and death is a very useful preparation. Enterocytes towards the apex of the villi become increasingly susceptible to apoptosis. Here, this ”apoptotic gradient” is used to demonstrate the presence of BAX and BCL-2 proteins in the cytoplasm of cells at the onset of apoptosis. In semithin serial sections of the small intestine, BAX, BCL-2 and DNA fragmentation were demonstrated. BAX and BCL-2 are always colocalized and only in cells with fragmented DNA. The gradient of BAX or BCL-2 staining is similar to the gradient of DNA fragmentation. Immunoreactivity for BCL-2 or BAX is most intense in cells that are prone to become apoptotic next in the course of cellular turnover but not in cells in an advanced apoptotic state, showing strongly condensed chromatin. When using the same technique on semithin sections of kidney biopsies, containing epithelia with low cellular turnover, we found DNA fragmentation mainly in the epithelial cells of the distal tubules. Similar to the situation in the enterocytes, BAX staining was confined to the cytoplasm of epithelial cells with a moderate degree of DNA fragmentation and reduced in epithelial cells with a high degree of DNA fragmentation. In contrast to the situation in the small intestine, very low levels of BCL-2 were found. The results suggest that expression of BCL-2 and BAX is related to cell damage as indicated by DNA fragmentation but not to advanced stages of cellular death, as indicated by chromatin condensation and cellular shrinkage.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Protein-DNA interactions within the promoter of a cell cycle-regulated human H4 histone gene were examined by binding of 5′-end-labeled DNA segments to Western blots of nuclear protein fractions. Specific protein interactions were observed with DNA segments located between -500 bp and -1,070 bp upstream of the ATG initiation codon and included a histone H1 binding segment flanked on both sides by binding sites for a 45 kD nuclear protein. This region of the gene contains a DNase I-sensitive site in the center (-720 to -820 bp), and sequence analysis revealed the presence of scaffold attachment sequences in the two flanking segments. Topoisomerase II consensus sequences and in vitro topoisomerase II cleavage sites were also detected in the two flanking segments. Our results suggest that the 45 kd nuclear protein may preferentially interact with these two segments of the H4 histone gene to mediate association with the nuclear matrix. The presence of negative regulatory elements in this putative matrix attachment region provides a basis for the speculation that such nuclear proteins are associated with alterations in gene-matrix interaction that are functionally related to gene expression.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 0730-2312
    Keywords: osteocalcin ; CCAAT ; transcription ; phosphatase ; steroid-like half-elements ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The rat osteocalcin gene encodes a 6-kD osteoblast-specific protein that is expressed postproliferatively. The developmental and steroid hormone responsive expression of the osteocalcin gene is transcriptionally regulated by a promoter with multiple basal and enhancer elements that exhibit activity controlled by a series of physiological mediators (e.g., 1,25(OH)2D3, glucocorticoids). In this study, we established the contribution of the rat osteocalcin (OC) box domain ( -99 to -76), a proximal basal element with a CCAAT motif as a central core, to transcriptional activity of the rat osteocalcin gene with in vivo co-transfection assays. By this same assay, however, the highly homologous (22 of 24 nt) human OC box element was unable to compete for transcription factor binding with the rat OC promoter. In vitro protein/DNA interaction studies confirm the presence of two protein binding sites in the OC box region, one of which overlaps the CCAAT motif and, at least in part, accounts for species-specific expression. Competition analysis established that the single nucleotide substitution of adenine for thymine, which converts the core motif of the rat OC box (CCAAT) to the core motif of the human OC box (CCAAA), accounts for observed species differences in transcription factor interactions. The CCAAT-specific protein/DNA interactions are heat stable and insensitive to phosphatase treatment. A second protein/DNA interaction located upstream of the CCAAT motif includes two steroid-like half-elements. These interactions are heat labile and sensitive to phosphatase treatment in contrast to the CCAAT-specific interactions. The human OC promoter contains only a single steroid-like half-element, while two steroid half-elements with an 11 nucleotide spacer are present in the rat OC promoter. These observed variations in sequence organization and transactivation factor binding in analogous proximal basal regulatory regions of the OC gene promoter may provide a basis for species-restricted variations in responsiveness to physiological mediators of OC gene expression at the transcriptional level.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 0730-2312
    Keywords: osteosarcoma cells ; osteocalcin gene ; osteoblasts ; vitamin D response element (VDRE) ; transcription factor complexes ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Vitamin D responsive transcription of the bone-specific osteocalcin gene differs markedly in osteosarcoma cells and normal diploid osteoblasts. In osteoblasts the osteocalcin gene is transcribed, and upregulated by Vitamin D, only in post-proliferative cells, but in osteosarcoma cells expression is constitutive. This distinction in transcriptional regulation of the osteocalcin gene correlates with striking differences in the relative representation of two principal Vitamin D-dependent protein/DNA complexes designated V1 and V2 at the Vitamin D responsive element in the osteocalcin promoter. Formation of both complexes is Vitamin D dependent and they contain the Vitamin D receptor as well as an RXR related protein. Pore size exclusion and sedimentation velocity analyses suggest that the V1 and V2 complexes represent oligomeric protein assemblies (respectively, tetramers and trimers), and reflect primarily DNA-directed association of the monomeric protein components at the osteocalcin Vitamin D responsive element. UV crosslinking and methylation interference analyses of the V1 and V2 complexes at the osteocalcin Vitamin D responsive element indicate differences in protein/DNA recognition. For example, the V1 complex interacts with both steroid half-elements, whereas the V2 complex appears to recognize the proximal half-element. Our findings suggest variations in protein/protein and protein/DNA interactions of the VDR and RXR related complexes V1 and V2 at the osteocalcin Vitamin D responsive element that reflect unique properties of the osteosarcoma and normal diploid osteoblast phenotype. © 1994 Wiley-Liss, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 52 (1993), S. 171-182 
    ISSN: 0730-2312
    Keywords: caffeine ; bone matrix implants ; delayed ossification ; osteoblasts ; gene expression ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: We have addressed questions raised by the observation in fetal rats of delayed ossification induced by caffeine at maternal doses above 80 mg/kg body weight per day. The effect of caffeine on endochondral bone development and mineralization has been studied in an experimental model system of bone formation which involves implantation of demineralized bone particles (DBP) in subcutaneous pockets of young growing rats. Caffeine's effects on cellular events associated with endochondral ossification were examined directly by quantitating cellular mRNA levels of chondrocyte and osteoblast growth and differentiation markers in DBP implants from caffeine-treated rats harvested at specific stages of development (day 7 through day 15). Oral caffeine administration to rats implanted with DBP resulted in a dose dependent inhibition of the formation of cartilage tissue in the implants. Histologic examination of the implants revealed a decrease in the number of cells which were transformed to chondrocytes compared to control implants. Those cartilaginous areas that did form, however, proceeded through the normal sequelae of calcified cartilage and bone formation. At the 100 mg/kg dose, cellular levels of mRNA for histone, collagen type II, and TGFβ were all reduced by greater than 40% of control implants consistent with the histological findings. Alkaline phosphatase activity in the implants and mRNA levels for proteins reflecting the hypertrophic chondrocyte and bone phenotype, collagen type I and osteocalcin were markedly decreased compared to controls. Lower doses of 50 and 12.5 mg/kg caffeine also resulted in decreased cellular proliferation and transformation to cartilage histologically and reflected by significant inhibition of type II collagen mRNA levels (day 7). The effects of caffeine on gene expression observed in vivo during the period of bone formation (day 11 to day 15) in the DBP model were similar to the inhibited expression of H4, alkaline phosphatase, osteocalcin, and osteopontin found in fetal rat calvarial derived osteoblast cultures following 24 hour exposure of the cultures to 0.4 mM caffeine. Thus the observed delayed mineralization in the fetal skeleton associated with caffeine appears to be related to an inhibition of endochondral bone formation at the early stages of proliferation of undifferentiated mesenchymal cells to cartilage specific cells as well as at later stages of bone formation.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 55 (1994), S. 366-372 
    ISSN: 0730-2312
    Keywords: osteoclast ; gene regulation ; rat ; skeleton ; osteopontin ; osteocalcin ; mineralization ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Osteopetrosis is a skeletal condition in which a generalized radioopacity of bone is caused by reduced resorption of bone by osteoclasts. However, it has recently been shown that during skeletal development in several osteopetrotic rat mutations specific aberrations occur in gene expression reflecting the activity of the bone forming cells, osteoblasts, and the development of tissue organization. To evaluate their pathogenetic significance, progressive osteoblast differentiation was studied in vitro. Primary cultures of normal osteoblasts undergo a sequential expression a cell growth and tissue-related genes associated with development of skeletal tissue. We report that osteoblast cultures can be established from one of these mutants, toothless; that these cells in vitro exhibit similar aberrations in gene expression during cell proliferation and extracellular matrix formation and mineralization observed in vivo; and that an accelerated maturation sequence by mutant osteoblasts mimics the characteristic skeletal sclerosis of this disease. These data are the first direct evidence for an intrinsic osteoblast defect in osteopetrosis and establish an in vitro model for the study of heritable skeletal disorders. © 1994 Wiley-Liss, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 0730-2312
    Keywords: rat bone transcription ; rat bone transcription factors ; osteopetrotic bone transcription ; osteocalcin transcription ; collagen transcription ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Transcriptional regulation of gene expression in vivo in bone, associated with normal development or skeletal disorders, to date, has not been studied. We report the successful isolation of nuclei that are transcriptionally active from normal and osteopetrotic rat bone. Transcription rates of cell growth and bone-related genes (including histone H4, c-fos, c-jun, TGFβ1, β2 macroglobulin, collagen, fibronectin, osteocalcin, osteopontin, and tartrate resistent acid phosphatase) change as a function of calvarial development from birth to 6 weeks and are selectively modified in osteopetrotic animals. Additionally, nuclei isolated from intact bone yield promoter binding factors. Bone nuclei, which transcribe faithfully and contain the normal complement of nuclear protein factors, offer a powerful approach for investigating in vivo gene regulation in skeletal development and pathology. © 1994 Wiley-Liss, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 0730-2312
    Keywords: granulocytes ; monocytes ; human myeloid cell lines ; retinoic acid ; phorbol ester ; mRNA ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The human myeloid cell nuclear differentiation antigen (MNDA) is expressed constitutively in cells of the myeloid lineage, appearing in myeloblast cells in some cases of acute myeloid leukemia and consistently being detected in promyelocyte stage cells as well as in all later stage cells including peripheral blood monocytes and granulocytes. The human myeloid leukemia cell lines, HL-60, U937, and THP-1, express similar levels of immunochemically detectable MNDA. Although, the level of MNDA mRNA in primary monocytes is very low it was up-regulated at 6 h following the addition of interferon α. The effect of interferon α on the MNDA mRNA is also observed in the cell lines HL-60, U937, and THP-1. The MNDA mRNA level in primary granulocytes was unaffected by addition of interferon α and other agents including interferon γ, endotoxin, poly (I) · poly (C), and FMLP. The MNDA mRNA level in the myeloid cell lines was also unaffected by the latter four agents. Induction of differentiation in the myeloid cell lines with phorbol ester induces monocyte differentiation which was accompanied by a decrease in MNDA mRNA level. This reduced level of mRNA could then be elevated with subsequent interferon α treatment. The effects of phorbol ester on MNDA mRNA appeared to be associated with induced differentiation since inhibiting cell proliferation did not alter the level of MNDA mRNA and cell cycle variation in MNDA mRNA levels were not observed. The ability of interferon α to up-regulate MNDA mRNA in phorbol ester treated myeloid cell lines is consistent with the observations made in primary monocytes. Granulocyte differentiation induced by retinoic acid treatment of HL-60 cells did not alter the MNDA mRNA level which was also unchanged following subsequent treatment with interferon α. The lack of interferon α effects on retinoic acid treated HL-60 cells is consistent with its inability to influence MNDA mRNA level in primary granulocytes.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...