Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    European archives of oto-rhino-laryngology and head & neck 257 (2000), S. 193-198 
    ISSN: 1434-4726
    Keywords: Key words Linear acceleration ; Inter-aural axis ; Visual ; vestibular interaction ; Dynamic visual acuity
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract We investigated visual-vestibular interactions during linear acceleration along the inter-aural axis. Eighteen healthy volunteers and two patients with central neurological diseases were subjected to transaural linear acceleration in the direction of gravity force (frequency: 0.5–1.5 Hz; amplitude: 5 cm). During linear acceleration, eye movements were recorded under three test conditions: eyes closed (EC), while staring at an imaginary target (IT) and during the testing of dynamic visual acuity (DVA). As parameters of evaluation we used the amplitude of horizontal eye movements, phase shift and the decrease of DVA threshold (DVAT). Under all test conditions, eye amplitude increased with rising stimulus frequency and exceeded, especially in the higher frequency range, a hypothetically calculated eye amplitude for smooth pursuit. The combination of a visual and vestibular input (DVA and IT) led to a better compensation (lower phase shift) than under vestibular stimulation alone (EC). Eye movements during low-frequency stimulation depended more on the visual system while responses in the higher frequency range were mainly triggered by the otolith organ. At 1.5 Hz the compensatory function of the visual-vestibular system was limited (rising phase shift) and DVAT decreased even in a significant number of healthy subjects. Patients with diseases of the central nervous system showed a higher phase shift and thus a stronger decrease of DVAT (two levels) already at a stimulus frequency of 1.25 Hz.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    European archives of oto-rhino-laryngology and head & neck 257 (2000), S. 485-489 
    ISSN: 1434-4726
    Keywords: Key words Alcohol ; Dynamic visual acuity ; Vertical linear acceleration ; Maculo-ocular-reflex ; Vertical body-movements
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Visual orientation is the most important sensory input during locomotion (e.g. walking, driving a car, riding a bicycle). We investigated dynamic visual acuity (DVA) during vertical body-oscillations (amplitude 5 cm; frequency 1.5 Hz) in 12 healthy subjects before and twice after ethanol consumption. During oscillation, vertical eye movements were recorded under two test conditions: with eyes closed (EC) and during DVA testing. A significant increase in vertical eye-amplitude after ethanol ingestion occurred only during EC tests, as a possible sign of vestibular hyperreaction. During vestibular stimulation alone (EC), ethanol did not affect the phase shift between stimulus and eye movements. However, when the subjects were given an additional visual stimulus (DVA), the post-alcohol phase shift rose significantly. Surprisingly, the post-alcohol phase shift values for the two test conditions showed no significant differences. After ethanol ingestion we found no changes in static visual acuity but a significant loss of DVA. Volunteers with a change of DVA threshold (DVAT) showed significantly (P = 0.004) higher post-alcoholic changes in the phase shift. In summary, low doses of ethanol disturbed the visually guided oculomotor response during fixation of an earth-fixed target while the observer was subject to linear vertical acceleration. This effect led to an increasing delay between the beginning of body and eye movements. The consequence was an increasing phase shift and thus a decrease in DVA during whole-body oscillation which was comparable to movements during human locomotion.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...