Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1980-1984  (2)
  • 1975-1979  (1)
  • Electron microprobe analysis  (3)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Pflügers Archiv 399 (1983), S. 241-242 
    ISSN: 1432-2013
    Keywords: Single renal tubules ; Electron microprobe analysis ; Cellular concentrations
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract A method is described whereby single renal tubules, incubated in varying incubation media can be captured and prepared for electron microprobe analysis for intracellular sodium, potassium, chloride, phosphorus, magnesium amongst others.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-2013
    Keywords: Electron microprobe analysis ; Sympathetic neurones ; Cellular electrolyte concentrations ; Carbachol ; Ouabain
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Intracellular element concentrations were measured in rat sympathetic neurones using energy dispersive electron microprobe analysis. The resting intracellular concentrations of sodium potassium and chloride measured in ganglia maintained for about 90 min in vitro at 25° C were 3, 155 and 25 mmol/kg total tissue wet weight respectively. Recalculated in mmol/l cell water, these values are 5, 196 and 32 respectively. There were no significant differences between the nuclear and cytoplasmic values of these ions. Incubation in either carbachol (108 μmol/l, 4 min) or ouabain (1 mmol/l, 60 min) significantly increased the intracellular sodium and decreased the intracellular potassium concentrations. Neither substance materially altered the intracellular chloride concentration. The data obtained are compared and contrasted to those obtained in mammalian sympathetic neurones using chemical analysis and ion-sensitive microelectrodes.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Journal of molecular medicine 57 (1979), S. 993-999 
    ISSN: 1432-1440
    Keywords: Electron microprobe analysis ; Intracellular electrolytes ; Kidney ; Ischaemia ; Elektronenstrahl-Mikroanalyse ; Intrazelluläre Elektrolyte ; Niere ; Ischämie
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary In order to be able to examine the processes involved in transepithelial transport in tissues, which are not composed of a single cell type, methods are required, which permit analysis at a cellular level. The technique of electron microprobe analysis permits the intracellular concentrations of many elements to be determined simultaneously in various portions of the cell. The application of this method to renal cortical tissue has shown that the best estimates of the cytoplasmic concentrations are to be obtained in regions close to the nucleus, farthest from the basolateral infoldings and microvilli, which separate the intracellular environment from the extracellular space. The nuclear concentrations of Na and K do not differ from those in the surrounding cytoplasm, although those of P and C1 are somewhat higher in cytoplasm. The intracellular element concentrations in the different cell types vary somewhat, proximal tubular cells contain higher concentrations of Na and C1 and lower ones of P than distal tubular cells. Following ischaemia, a manoeuvre know to result in a disturbance of intracellular electrolytes, Na was observed to rise and K to fall only in the non-surface cells of kidneys exposed to the air, but in all cells, if the kidneys were kept air-free in an atmosphere of N2. The proximal and distal tubular cells showed a variable resistance to ischaemia, the distal tubular cells being much more resistant. Despite the severity of the electrolyte disturbance following ischaemia, the intracellular composition was completely restored one hour after re-introducing renal blood flow.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...