Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 23 (1996), S. 325-346 
    ISSN: 0271-2091
    Keywords: Taylor-Görtler-like vortices ; spiralling corner vortices ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: With the purpose of providing physical insight into the developing spanwise flow motion and identifying the presence of Taylor-Görtler- like vortices, we conducted a flow simulation in a rectangular cavity defined by a square cross-section and a spanwise aspect ratio of 3:1. The governing equations were solved for the transient processes by using a finite volume method in conjunction with segregated solution procedures. In the present work, attention is placed on the spiralling corner vortices near the two end walls and the longitudinal meandering Taylor-Görtler-like vortices. The investigated Reynolds number is taken to be 1500. As a vehicle for the present flow simulation, validation against analytic data was carried out first for a configuration similar to the problem of interest. This study demonstrates the feasibility of the employed computer code.
    Additional Material: 12 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 26 (1998), S. 557-579 
    ISSN: 0271-2091
    Keywords: lid-driven cavity ; Taylor-Görtler-like vortices ; instabilities ; Engineering ; Numerical Methods and Modeling
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: In this paper we apply a finite volume method, together with a cost-effective segregated solution algorithm, to solve for the primitive velocities and pressure in a set of incompressible Navier-Stokes equations. The well-categorized workshop problem of lid-driven cavity flow is chosen for this exercise, and results focus on the Reynolds number. Solutions are given for a depth-to-width aspect ration of 1:1 and a span-to width aspect ratio of 3:1. Upon increasing the Reynolds number, the flows in the cavity of interest were found to comprise a transition from a strongly two-dimensional character to a truly three-dimensional flow and, subsequently, a bifurcation from a stationary flow pattern to a periodically oscillatory state. Finally, viscous (Tollmien-Schlichting) travelling wave instability further induced longitudinal vortices, which are essentially identical to Taylor-Görtler vortices. The objective of this study was to extend our understanding of the time evolution of a recirculatory flow pattern against the Reynolds number. The main goal was to distinguish the critical Reynolds number at which the presence of a spanwise velocity makes the flow pattern become three-dimensional. Secondly, we intended to learn how and at what Reynolds number the onset of instability is generated. © 1998 John Wiley & Sons, Ltd.
    Additional Material: 19 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...