Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    European journal of applied physiology 79 (1999), S. 182-191 
    ISSN: 1439-6327
    Keywords: Key words Training theory ; Modeling ; Taper ; Performance
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract This paper defines a training theory with which to predict the effectiveness of various formats of taper in optimizing physical performance from a standardized period of training and taper. Four different taper profiles: step reduction vs exponential (exp) decay and fast vs slow exp decay tapers, were simulated in a systems model to predict performance p(t) resulting from a standard square-wave quantity of training for 28 days. The relative effectiveness of each of the profiles in producing optimal physical improvement above pre-taper criterion physical test standards (running and cycle ergometry) was determined. Simulation showed that an exp taper was better than a step-reduction taper, and a fast exp decay taper was superior to a slow exp decay taper. The results of the simulation were tested experimentally in field trials to assess the correspondence between simulation and real-training criterion physical tests in triathlon athletes. The results showed that the exp taper (=5 days) group made a significantly greater improvement above a pre-taper standard (P≤0.05) than the step-reduction taper group in cycle ergometry, and was better, but not significantly so, in a 5-km run. A fast exp taper group B (τ=4 days) performed significantly better (P≤0.05) in maximal, cycle ergometry above a pre-taper training standard than a slow exp taper group A (τ=8 days) and was improved more, but not significantly so, than group A in a 5-km criterion run. The mean improvement on both physical tests by exp decay taper groups all increased significantly (P≤0.05) above their pre-taper training standard. Maximum oxygen uptake increased significantly in a group of eight remaining athletes during 2 weeks of final taper after three athletes left early for final preparations at the race site.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    International Journal for Numerical and Analytical Methods in Geomechanics 20 (1996), S. 331-349 
    ISSN: 0363-9061
    Keywords: elasticity ; buried pipes ; surface heading ; soil-structure interaction ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Notes: A method is presented which may be used to compute the displacements, strains and moments (both in-plane and transverse) in buried structures such as pipelines and culverts subjected to longitudinal bending. This type of bending can occur if a surface loading such as a vehicular loading or an embankment loading is applied to the soil above the pipe or culvert.Fourier transforms are used to reduce the three-dimensional problem to one involving only two spatial directions, thereby reducing the data preparation and computation time. Conventional finite element analysis is used to approximate the field quantities in the transformed two-dimensional plane. Two Fourier integral element types have been developed which have many applications in geotechnical engineering.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...