Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Intestine  (7)
  • Enteric neurons  (4)
  • Guinea-pig ileum  (4)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Naunyn-Schmiedeberg's archives of pharmacology 306 (1979), S. 195-201 
    ISSN: 1432-1912
    Keywords: Substance P ; Guinea-pig ileum ; Densensitization ; Peptidergic nerves ; Immunofluorescence
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The desensitization of receptors for substance P in the longitudinal muscle of the guinea-pig ileum has been studied. Receptors for substance P in the muscle became desensitized in the presence of relatively large concentrations of synthetic substance P; a desensitizing concentration of substance P of 7.5×10−9 M shifted the concentration-response curve for substance P about 20-fold to the right, while a desensitizing concentration of 7.5×10−8 M shifted the curve about 300-fold to the right. This desensitization appeared specific; concentration-response curves for carbachol, DMPP, 5-HT and bradykinin were not significantly affected by substance P, 7.5×10−8 M. Furthermore, substance P in concentrations up to 7.5×10−8 M did not modify transmission from either cholinergic nerves or enteric inhibitory nerves when these were stimulated electrically. However, hyoscine-resistant contractions produced by stimulation of nerves in the ileum at 10 Hz were abolished by exposure to concentrations of substance P of 7.5×10−9 M or greater, suggesting that these nerves release a substance similar to or identical with substance P. DMPP evoked small hyoscine-resistant contractions of the ileum. These contractions were also antagonised by desensitization of receptors for substance P. Immunohistochemical studies showed substance P-like immunoreactivity in nerve terminals of both the myenteric and submucous plexuses.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Naunyn-Schmiedeberg's archives of pharmacology 328 (1985), S. 446-453 
    ISSN: 1432-1912
    Keywords: Substance P ; Enteric neurons ; Autonomic nervous system
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The sites of action and possible roles of substance P in contracting the circular muscle of the guinea-pig ileum were studied using two analogues of substance P that act as antagonists of some of its actions. These ared-Arg1,d-Pro2,d-Trp7,9, Leu11-substance P andd-Pro2,d-Trp7,9-substance P, referred to by the single letter amino acid codes for the substituting amino acids as (RPWWL)-SP and (PWW)-SP, respectively. Records of circular muscle activity were taken from strips of intestine free of mucosa and submucosa and from rings with all layers of intestine intact. Substance P was equally effective in contracting the circular muscle strips as it was in contracting the longitudinal muscle. The contractions of strips were not blocked by hyoscine (2×10−6 M) or tetrodotoxin (6×10−7 M), but were substantially reduced by (RPWWL)-SP (6.7×10−6 M) or (PWW)-SP (2×10−5 M). In contrast, contractions of the circular muscle of whole rings of intestine elicited by low concentrations of substance P (4×10−7M) were blocked by hyoscine or tetrodotoxin but notreduced by the substance P antagonists in the concentrations referred to above. These observations indicate that the antagonists are effective at receptors for substance P on the muscle, but not at substance P receptors on enteric cholinergic nerves. Transmural stimulation of strips of circular muscle or of intestinal rings in the presence of hyoscine evoked contractions that were blocked by tetrodotoxin. These hyoscineresistant, nerve-mediated contractions could be elicited by single pulses in the strips. The contractions were reduced to less than 20% of original amplitude by (RPWWL)-SP (6.7×10−6M). Reflex contractions of the circular muscle recorded on the oral side of a distension stimulus had a low-threshold, hyoscine-sensitive and a high-threshold, hyoscine-insensitive, component. The low threshold component was unaffected by the substance P antagonists whereas the high threshold component was depressed. It is concluded that substance P nerves are effective in transmitting to the circular muscle, that they are final nerves in non-cholinergic excitatory reflexes, and that the substance P antagonist analogues can be used to distinguish actions of substance P at neural and muscle receptors.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Naunyn-Schmiedeberg's archives of pharmacology 329 (1985), S. 382-387 
    ISSN: 1432-1912
    Keywords: Substance P ; Enteric neurons ; Mucosal transport
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The action of substance P (SP) on mucosal ion transport has been investigated in the guinea-pig small intestine. Segments of intestine were dissected free of external muscle and myenteric plexus and mounted in Ussing chambers. Short-circuit current (I sc) was measured as an indication of net ion transport across the tissue. SP (〉10−10 M) added to the submucosal side of the tissue caused a transient increase in I sc. Tetrodotoxin (TTX, 10−7 M) decreased the maximum SP response to 11% of the control value. TTX completely inhibited the response to electrical field stimulation but had no effect on I sc increases due to carbachol or theophylline. In the presence of hyoscine (10−7 M) the SP response was reduced to 42% of the control value, but hyoscine had no effect on the TTX-resistant SP response. Mepyramine (10−6 M) had no significant effect on the SP response. These results suggest that SP alters mucosal ion transport by stimulation of cholinergic and non-cholinergic nerves in the mucosa-submucosa. A small part of the SP response appears to be due to a direct action on epithelial cells. The SP antagonist (d-Arg1, d-Pro2, d-Trp7.9, Leu11)-SP decreased the magnitude of the TTX-resistant SP response, and caused a decrease of similar magnitude in the total SP response. These results imply that the major component of the SP response, which is due to an action on neurons, is unaffected by this antagonist. It is concluded that the SP receptors on epithelial cells are blocked by the antagonist and are different to the SP receptors on submucous neurons, which are not blocked by the antagonist.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Naunyn-Schmiedeberg's archives of pharmacology 331 (1985), S. 260-266 
    ISSN: 1432-1912
    Keywords: Enteric neurons ; Serotonin ; Mucosal transport ; Substance P receptor
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary It is known that the majority of the mucosal nerve fibres in the guinea-pig small intestine arise from submucous ganglia. There are a number of neurochemically distinct populations of nerve cells in these ganglia, approximately half of them being cholinergic. In these studies we have stimulated isolated preparations of mucosa and submucosa with electrical field stimulation (EFS), 5-hydroxytryptamine (5-HT) and the nicotinic agonist 1,1-dimethyl-4-phenylpiperazinium (DMPP) and monitored changes in ion transport. Segments of intestine were dissected free of external muscle and myenteric plexus and mounted in Ussing chambers. Short-circuit current (I sc) was measured as an indication of net ion transport across the tissue. EFS consisted of passing bipolar rectangular stimulus pulses through two platinum wires, one placed on each of the mucosal and submucosal sides of the tissue. EFS, 5-HT and DMPP each caused a transient increase inI sc. Tetrodotoxin (TTX) abolished all of the EFS response and the majority of the response observed with 5-HT or DMPP, suggesting that the action of these stimuli on the mucosa is primarily nerve-mediated. The TTX-sensitive responses to 5-HT (〉5×10−7 M) and DMPP consisted of two components, appearing with different latencies. The response to EFS also consisted of two components. Hyoscine abolished the first component of each of these responses and significantly reduced the amplitude of the second, by 40% (for EFS and 5-HT) and 84% (for DMPP). At lower 5-HT concentrations, only the later component was seen, and this was unaffected by hyoscine. These results suggest that the early component of each response is due to the release of acetylcholine from cholinergic nerves. The hyoscine-resistant responses to EFS and DMPP were reduced by a substance P antagonist (d-Arg1,d-Pro2,d-Trp7,9, Leu11), suggesting that these responses involve activation of substance P receptors in the mucosa. The studies suggest that EFS and 5-HT (〉5×10−7 M) stimulate both cholinergic and non-cholinergic nerves effectively, that 5-HT (10−8–5×10−7 M) preferentially stimulates non-cholinergic nerves and that DMPP preferentially stimulates cholinergic nerves.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Naunyn-Schmiedeberg's archives of pharmacology 294 (1976), S. 47-60 
    ISSN: 1432-1912
    Keywords: Autonomic pharmacology ; Peristalsis ; Intestine ; 5-hydroxytryptamine
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The enteric reflexes in isolated segments of the distal colon and rectum of the guinea-pig were studied by applying localized distensions and recording the consequent changes in circular muscle activity, and by recording tension changes in the circular muscle during the propulsion of a bolus in vitro. Lesions of the wall of the colon were made to locate nerve pathways involved in the reflexes and pharmacological tests were applied to investigate the natures of transmitters released and the types of receptors involved. Distension produced a transient contraction of the circular muscle on the oral side and sustained relaxation on the anal side. Both reflexes were nervemediated. They were elicited in segments deprived of mucosa and submucosa. Interruption of Auerbach's plexus, but not interruption of the submucosal plexus, prevented their conduction. The ascending excitatory reflex was partly blocked by hyoscine and was also partly blocked by methysergide or by making the preparation tachyphylactic to the excitatory action of 5-hydroxytryptamine. The ascending excitatory pathways apparently involve neurons releasing a 5-HT-like transmitter as well as cholinergic neurons. The descending inhibitory reflex was not antagonized by hyoscine, guanethidine, methysergide or mepyramine. It is assumed that the inhibitory neurons activated in this reflex are identical with the noncholinergic, non-adrenergic, enteric inhibitory neurons found throughout the intestine. If both the ascending excitatory and descending inhibitory reflexes acted simultaneously on the same area of circular muscle, the inhibitory response tended to dominate. Pellets of faeces, covered by a thin layer of resin, were introduced into the oral ends of isolated segments of colon. They were propelled analwards at speeds of 0.5–1.6 mm/s. Tension records showed that the pellets were preceded by relaxation and followed by a ring of contraction. The propulsion was blocked by both hyoscine and methysergide. Descending waves of contraction were also observed in empty segments of colon. These occurred spontaneously or were initiated by stretch. They did not occur in the presence of hyoscine or tetrodotoxin. It is postulated that three factors may contribute to propulsion in the guinea-pig distal colon: ascending excitatory reflexes which evoke contractions above a bolus; descending inhibitory reflexes which cause relaxations below; and contractions which, once set up in the circular muscle, travel in an anal direction.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Naunyn-Schmiedeberg's archives of pharmacology 336 (1987), S. 419-424 
    ISSN: 1432-1912
    Keywords: Guinea-pig ileum ; Myenteric plexus ; Circular muscle ; Opioid receptors ; Naloxone
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The actions of opioids were examined in a strip preparation of the external muscle and myenteric plexus of the guinea-pig ileum cut parallel to the circular muscle. Contractions of the circular muscle induced by electrical stimulation of myenteric neurons were depressed in a concentration-dependent manner by the mu agonists, morphine and DAGO, and by the kappa agonist, U-50,488H. The concentrations of morphine, DAGO and U-50,488H which depressed nerve-mediated contractions by 50% (IC50) were 86 nM, 11 nM and 5.0 nM, respectively. The equilibrium dissociation constants (K D) for naloxone as an antagonist of the inhibitory effects of DAGO and of U5-0,488H were 5.6 nM and 29.4 nM, respectively. In contrast to the potent inhibitory effects of mu and kappa agonists, the delta-selective agonist, d-Pen-l-Pen, produced only weak inhibition of nerve-mediated contractions. Even at a concentration of 3 μM, there was less than 50% inhibition, which was not antagonised by the delta receptor antagonist, ICI 174864. The experiments indicate that both mu and kappa opioid receptors are present on the myenteric neurons supplying the circular muscle and that delta receptors are either absent or ineffectively activated.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Naunyn-Schmiedeberg's archives of pharmacology 307 (1979), S. 57-63 
    ISSN: 1432-1912
    Keywords: Substance P ; Intestine ; Autonomic nervous system ; Peptidergic nerves
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Acid extracts from both normal and extrinsically denervated ileum contained a compound which was indistinguishable from synthetic substance P; this compound was assayed by examining its contractile effect on the longitudinal muscle of segments of ileum in which receptors for acetylcholine and histamine were blocked. Contractions caused by the compound were markedly and selectively antagonized when the ileum was made insensitive to the action of substance P. The activities in the extract and of synthetic substance P were both destroyed by chymotrypsin but were not affected by trypsin or carboxypeptidase B. The concentrations of substance P-like material in normal and extrinsically denervated segments were not significantly different, being equivalent to 0.48 μg of substance P per g of external muscle plus myenteric plexus. A compound with substance P-like activity was liberated by stimulation of intramural nerves, either electrically or by dimethylphenylpiperazinium, in both normal and extrinsically denervated segments of ileum. The release of this compound was prevented by tetrodotoxin and its action on the muscle was blocked when the ileum was made insensitive to the action of substance P. Experiments with transmural stimulation showed that excitatory nerve pathways involving substance P neurons extend for less than 4 cm along the intestine.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Naunyn-Schmiedeberg's archives of pharmacology 339 (1989), S. 166-172 
    ISSN: 1432-1912
    Keywords: Guinea-pig ileum ; Myenteric plexus ; Circular muscle ; Opioid dependence ; Morphine withdrawal
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Guinea-pigs were treated with morphine for 6–8 days by subcutaneous implantation of pellets, each containing a mixture of morphine base (120 mg) and morphine hydrochloride (35 mg). Each guinea-pig received a single pellet. Mechanical activity of the circular muscle was recorded in vitro in preparations comprising the circular muscle and myenteric plexus. Exposure to morphine was maintained by addition of 1 μM morphine to the organ baths. After 90 min, morphine was withdrawn, either by repeatedly washing tissues in morphine-free Krebs' solution , or by addition of naloxone to reduce the occupancy of the opioid receptors by morphine. Withdrawal of morphine resulted in markedly enhanced contractile activity compared with that in circular muscle-myenteric plexus preparations from untreated control guinea-pigs. The withdrawal contractions were abolished by tetrodotoxin (600 nM) and greatly reduced by hyoscine (1 μM), indicating that they resulted from action potential discharge in myenteric neurons that release acetylcholine onto the circular muscle. Activation of the cholinergic excitatory motor neurons was not secondary to synaptic activation by cholinergic interneurons, because hexamethonium (100 μM) did not affect withdrawal contractions. The withdrawal response may therefore arise in the cholinergic excitatory motor neurons themselves, or in neurons that activate them via noncholinergic mechanisms.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Springer
    Naunyn-Schmiedeberg's archives of pharmacology 338 (1988), S. 397-400 
    ISSN: 1432-1912
    Keywords: Guinea-pig ileum ; Circular muscle ; Opioid receptors
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary In preparations of guinea-pig ileum comprising the circular muscle and the axonal processes of myenteric neurons, electrical stimulation evoked contractions of the circular muscle which were abolished by tetrodotoxin and by hyoscine, indicating that they resulted from action potential-mediated release of acetylcholine. The selective mu opioid agonist, (d-Ala2-N-Me-Phe4-Gly5-ol)-enkephalin (DAGO), and the selective kappa opioid agonist, trans-(±)-3,4-dichloro-N-(2-(I-pyrrolidinyl) cyclohexyl) benzeneacetamide, U-50488H, caused concentration-dependent and naloxone-reversible inhibitions of nerve-mediated contractions. The experiments indicate that opioid mu and kappa receptors are present on the axonal processes of cholinergic excitatory motor neurons supplying the circular muscle of the guinea-pig ileum.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Springer
    Naunyn-Schmiedeberg's archives of pharmacology 333 (1986), S. 393-399 
    ISSN: 1432-1912
    Keywords: Enteric neurons ; Mucosal transport ; Noradrenaline ; Somatostatin
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Noradrenaline (NA) and somatostatin (SOM) stimulate intestinal water and ion absorption and are found in mucosal nerve fibres and nerve terminals in submucous ganglia of the guinea-pig small intestine. As the main projection of submucous neurons is to the mucosa, NA and SOM might alter mucosal transport either by a direct effect on the epithelium or indirectly, by affecting submucous neurons. In this study these two possible sites of action of NA and SOM have been investigated in mucosa-submucosa preparations of guinea-pig ileum. In addition, the actions of NA and SOM on the secretory responses caused by stimulation of different populations of submucous neurons have been studied. The stimulants of secretion used were a nicotinic agonist, 1,1-dimethyl-4-phenylpiperazinium (DMPP, 10−5 M), 5-hydroxytryptamine (5-HT, 10−7 M) and electrical field stimulation (EFS), which activate cholinergic, noncholinergic and mixed populations of submucous secretomotor neurons, respectively. Segments of intestine were dissected free of external muscle and myenteric plexus and mounted in Ussing chambers. Short-circuit current (I sc) was measured as an indication of net active ion transport across the tissue. NA (≥10−8 M) and SOM (〉10−10 M) each caused a decrease in I sc, indicating a net increase in ion absorption. The NA response was abolished and the magnitude of the SOM response was reduced to 20% by tetrodotoxin (10−7 M). DMPP, 5-HT and EFS each stimulated nerves that increased I sc and each of these responses was significantly diminished by NA and SOM; for both NA and SOM the decrease in the DMPP response was significantly greater than the decrease observed in the response to carbachol (10−6 M). Phentolamine (10−6 M) abolished all of the effects of NA but caused no change in the SOM effects. These studies have shown that NA and SOM cause similar changes in net ion transport, that their actions are primarily on submucous secretomotor neurons and that NA and SOM can diminish the responses to stimulation of both cholinergic and noncholinergic submucous neurons. In this tissue it is also known that SOM coexists with NA in noradrenergic nerve terminals in the submucosa. However, when applied together, NA and SOM caused no greater decrement in the carbachol and 5-HT responses than would be predicted by adding the separate effects of NA and SOM. Hence there was no obvious interaction between NA and SOM effects on mucosal transport.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...