Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 41 (1980), S. 75-78 
    ISSN: 1432-1106
    Keywords: Mesencephalic reticulospinal neurons ; Conduction velocities ; Vestibular system, semicir cularcanal inputs
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Neurons that project to the spinal cord were located in the mesencephalic reticular formation outside the interstitial nucleus of Cajal in cerebellectomized cats under chloralose anesthesia. Of these neurons 40% responded only at C1 (reticulospinal N cells) and the remaining 60% responded at C4 also (reticulospinal D cells). Conduction velocities of N cells were significantly slower than those of D cells. N cells and D cells responded similarly to stimulation of the whole vestibular nerves and vestibular nuclei. However, they differ in semicircular canal inputs; N cells were more responsive to canal stimulation. Comparison of properties between mesencephalic reticulospinal and interstitiospinal neurons (Fukushima et al. 1980) showed that many reticulospinal and interstitiospinal neurons have similar properties, suggesting that functionally similar neurons may be found distributed over more than one anatomically defined cell group.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 32 (1978), S. 471-489 
    ISSN: 1432-1106
    Keywords: Reticulospinal ; Monosynaptic ; Excitation ; Inhibition ; Neck motoneurons
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Responses of neck motoneurons to electrical stimulation of the pontomedullary reticular formation were recorded intracellularly in cerebellectomized cats anesthetized with chloralose. Stimulation of nucleus reticularis (n.r.) ventralis and the dorsal part of n.r. gigantocellularis evoked short latency, monosynaptic inhibitory postsynaptic potentials (IPSPs) in the majority of motoneurons supplying the ipsilateral splenius, biventer cervicis and complexus muscles and in 25% of motoneurons projecting in the ipsilateral spinal accessory nerve. Monosynaptic IPSPs were also evoked by stimulating the medial longitudinal fasciculus (MLF) but lesion and collision experiments indicated that these IPSPs were independent of those evoked by reticular stimulation. Monosynaptic IPSPs were also occasionally observed following stimulation of the contralateral reticular formation, especially of the dorsal part of n.r. gigantocellularis. Monosynaptic excitatory postsynaptic potentials (EPSPs) were evoked in all classes of neck motoneurons studied by stimulation of n.r. pontis caudalis, gigantocellularis and ventralis. Each reticular nucleus appeared to contribute to this excitation. The excitation was bilateral but large monosynaptic EPSPs were most often seen in motoneurons ipsilateral to the stimulus site. Data indicated that pontine EPSPs were mediated by ventromedial reticulospinal fibers while medullary EPSPs were mediated by ventrolateral reticulospinal fibers. Neck motoneurons thus receive at least three distinct direct reticulospinal inputs, two excitatory and one inhibitory.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 36 (1979), S. 1-20 
    ISSN: 1432-1106
    Keywords: Reticulospinal ; Excitation ; Inhibition ; Axial motoneurons ; Limb motoneurons
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Responses of motoneurons supplying muscles of the forelimbs, hindlimbs, back, and neck to stimulation of the medial pontomedullary reticular formation were studied with intracellular recording in cere-bellectomized cats under chloralose anesthesia. Stimulation of the midline or of a reticular region consisting of nucleus reticularis (n.r.) pontis caudalis and the dorsorostral part of n.r. gigantocellularis produced monosynaptic excitation of ipsilateral motoneurons supplying axial muscles and flexor and extensor muscles in both proximal and distal parts of the limbs. This widespread excitation appears to have been produced by rapidly conducting medial reticulospinal fibers. Stimulation of a second region consisting of n.r. ventralis and the ventrocaudal part of n. r. gigantocellularis produced monosynaptic excitation of ipsilateral neck and back motoneurons but only longer latency, apparently multisynaptic excitation of limb motoneurons. Collision tests indicated that this monosynaptic excitation did not involve fibers descending along the midline. It therefore appears to have been produced by lateral reticulospinal fibers. Reticular stimulation also produced short latency, monosynaptic inhibition of neck motoneurons, long latency, apparently polysynaptic inhibition of limb motoneurons and intermediate latency inhibition of back motoneurons. The latencies and properties of inhibitory responses of back motoneurons indicated that they were produced either disynaptically by fast fibers or monosynaptically by slower fibers. The data indicate that the medial pontomedullary reticular formation can be divided into a number of different zones each with a distinct pattern of connections with somatic motoneurons. These include the dorsorostrally located medial reticulospinal projection area, from which direct excitation of a wide variety of motoneurons can be evoked, the ventrocaudally located lateral reticulospinal projection area from which direct excitation of neck and back and direct inhibition of neck motoneurons can be evoked and the dorsal strip of n.r. gigantocellularis which has direct excitatory and inhibitory actions only on neck motoneurons.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-1106
    Keywords: Mesencephalic reticulospinal neurons ; Superior colliculus ; Pericruciate cortex ; Neck muscle afferents
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Neurons were recorded extracellularly in the mesencephalic reticular formation outside the interstitial nucleus of Cajal in cerebellectomized cats anesthetized with α chloralose. Reticulospinal neurons were identified by antidromic stimulation of the upper cervical segments. Stimulation in the deep layers of the ipsilateral superior colliculus evoked firing in 36% of reticulospinal neurons. For many neurons thresholds for activation were high in the intermediate tectal layers and declined as the electrodes entered the underlying tegmentum. However, low threshold points were found above the deep fiber layer within the superior colliculus for some cells. Stimulation of the contralateral superior colliculus excited 10% of neurons and thresholds for activation were high above the deep fiber layer for all neurons. Stimulation of the ipsilateral and contralateral pericruciate cortex excited 39 and 21% of neurons, respectively. The lowest threshold area was found in the frontal eye fields. Sixteen percent of neurons received excitation from neck muscle afferents (C2 biventer-cervicis) bilaterally. Comparison of responses between mesencephalic reticulospinal neurons and interstitiospinal neurons (Fukushima et al. 1981) showed that responses of the two groups of neurons were similar when the pericruciate cortex and neck muscle afferents were stimulated. However, a difference was observed in tectal responses, since low threshold points were rarely observed above the deep fiber layer for interstitiospinal neurons.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...