Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Colloid & polymer science 264 (1986), S. 561-569 
    ISSN: 1435-1536
    Keywords: Fibrous composites ; mesophase ; longitudinal elastic modulus ; transverse elastic modulus ; major Poisson ratio
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract Expressions for the evaluation of the transverse and longitudinal elastic moduli and the major Poisson ratio of unidirectional fiber composites are derived. The model described is based on the correct version of Kerner's model, which in our case is conveniently modified by introducing a mesophase layer between the fiber and the matrix in the representative volume element surrounding the typical fiber. The expression for the longitudinal elastic modulus derived in this paper, and the law of mixtures already presented in previous papers, give concordant results. Therefore, the law of mixtures, taking the mesophase also into account, and the two-term unfolding model for the mesophase are used for the evaluation of its extent and its properties. The model was applied to a glass filament-epoxy resin composite and its predictions were found to be in good agreement with the experimental data.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Colloid & polymer science 262 (1984), S. 929-938 
    ISSN: 1435-1536
    Keywords: Fibrous composites ; mesophase ; unfolding models
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract A theoretical model was introduced for the evaluation of the boundary layer developed between the main phases during the preparation of unidirectional fiber composites. It has been shown that this thin layer influences considerably the physical properties of the composite. It was assumed that the physical properties of themesophase unfold from those of the hard-core fibers to those of the softer matrix. Thus, a multicylinder model was assumed improving the classical two-cylinder model introduced by Hashin and Rosen for the representative volume element of the composite. Based on thermodynamic phenomena appearing at the glass transition temperatures of the composite and concerning the positions and the sizes of the heat-capacity jumps there, as well as on the experimental values of the longitudinal elastic modulus of the composite, the extent of the mesophase and the mechanical properties of the composite may be accurately evaluated. This version of the model is based on a previous one concerning a multilayer model, but it is considerably improved in order to take into consideration, in a realistic manner, the physical phenomena developed in fiber reinforced composites.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...