Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 199 (1988), S. 75-83 
    ISSN: 0027-5107
    Keywords: Bloom syndrome patients ; Cell fusion ; Deoxynucleosides ; Lymphoblastoid B cell lines ; Sister-chromatid exchanges
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology , Medicine
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Mutation Research/Environmental Mutagenesis and Related Subjects 199 (1988), S. 75-83 
    ISSN: 0165-1161
    Keywords: Bloom syndrome patients ; Cell fusion ; Deoxynucleosides ; Lymphoblastoid B cell lines ; Sister-chromatid exchanges
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology , Medicine
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-1106
    Keywords: Medial mesodiencephalic junction ; Forel's field H ; Direct synaptic input ; Superior oblique motoneuron ; Inferior oblique motoneuron
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary This study investigated the nature of synaptic inputs from the Forel's field H (FFH) in the medial mesodiencephalic junction to inferior oblique (IO) motoneurons in the oculomotor nucleus and superior oblique (SO) motoneurons in the trochlear nucleus in anesthetized cats, using intracellular recording techniques. Stimulation of the FFH induced monosynaptic EPSPs in IO motoneurons on both sides. Paired stimulation of the ipsilateral FFH and contralateral vestibular nerve substantiated that the FFH-induced EPSPs were caused mainly by direct excitatory fibers from the FFH to IO motoneurons and partly by axon collaterals of excitatory neurons in the vestibular nuclei. Among parts of the FFH, the medial part was most effective for producing the EPSPs. Systematic tracking with the stimulating electrode in and around the FFH revealed that effective sites of stimulation inducing negative field potentials in the IO subdivision of the oculomotor nucleus, identified as extracellular counterparts of the EPSPs in IO motoneurons, were also located in the interstitial nucleus of Cajal, nearby reticular formation and posterior commissure, besides within and near the medial part of the FFH. Areas far rostral, dorsal and ventral to the FFH were ineffective. EPSP-IPSPs or EPSPs were mainly induced in SO motoneurons on both sides by FFH stimulation. Latencies of these EPSPs and IPSPs were close to those of the EPSPs in IO motoneurons, indicating their monosynaptic nature. Effective stimulation sites for inducing these synaptic potentials overlapped those for the EPSPs in IO motoneurons. Based on these results, it was suggested that excitatory and inhibitory premotor neurons directly controlling IO and SO motoneurons were located within and near the medial part of the FFH.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-1106
    Keywords: Vertical fast eye movement ; Omnipause neuron ; Midline pontine tegmentum ; Direct inhibitory projection ; Medium-lead burst neuron ; Forel's field H
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary This study examines the nature of the efferent projection of omnipause neurons (OPNs) in the midline pontine tegmentum to medium-lead burst neurons (BNs) in the Forel's field H (FFH), both of which exhibit activities related to vertical eye movements, using chronically prepared alert cats. Antidromic spikes of the BNs evoked by oculomotor nucleus stimulation were suppressed by shortly preceding (less than 5 ms) microstimulation within the OPN area including actual recording sites of OPNs. Many OPNs were antidromically activated by microstimulation at recording sites of the BNs. Furthermore, systematic tracking in and around the FFH with the stimulating microelectrode substantiated that the OPNs issued axonal branches within the BN area. These results suggest direct inhibitory projection of OPNs to the BNs.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-1106
    Keywords: Vertical saccade ; Forel's field H ; Saccaderelated neuron ; Mono- and disynaptic excitatory input ; Superior colliculus ; Cat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Excitatory inputs to neurons in the Forel's field H (FFH) related to visually induced vertical saccades from the ipsilateral superior colliculus (SC) were investigated in chronically prepared alert cats. By stimulation of the deep or intermediate layer of the SC, upward augmenting neurons (ANs) and one long-lead downward burst neuron (BN) were found to be activated monosynaptically, while medium-lead BNs were activated disynaptically. The monosynaptically activated neurons were not antidromically activated from the oculomotor nucleus, whereas disynaptically activated neurons were also activated antidromically from the inferior rectus subdivision of the nucleus. These results suggest that an excitatory input to the FFH from the SC for inducing vertical saccades of visual origin first reaches upward ANs and/or long-lead downward BNs in the FFH, which in turn drive medium-lead BNs in the same area synapsing with motoneurons related to vertical eye movements.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...