Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0533
    Keywords: Ganglioglioma ; Hamartia ; Proliferation ; Ki-67 ; p53
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Gangliogliomas are tumors composed of intimately admixed neuronal and glial components and account for approximately 1% of all brain tumors. Here we report the histopathological findings in 61 gangliogliomas. Epilepsy was the most common presenting symptom. Most gangliogliomas were located in the temporal lobes (74%). Thirteen percent of the gangliogliomas were associated with glioneuronal hamartias. There was considerable variation in neuronal size and density, presence of binucleated neurons, calcifications, desmoplasia, lymphocytic infiltrate, pilocytic differentiation, Rosenthal fibers, location, or histological uniformity. Fifteen percent of the gangliogliomas contained areas of purely astrocytic differentiation. All tumors were examined immunohistochemically for an aberrant p53 tumor suppressor gene product and for the presence of nuclear antigens associated with cell proliferation (Ki-67, Ki-S1, proliferating cell nuclear antigen). In 45 of 61 cases (74%) labeling indices for Ki-67 were less than 1%. Nuclear labeling for Ki-67 was observed exclusively in the astrocytic component. Gangliogliomas with very large neurons had higher Ki-67 labeling indices and occurred in younger patients than gangliogliomas with small-or intermediate-sized neurons. None of the tumors had an aberrant expression of p53. The observations suggest that gangliogliomas may arise from glioneuronal hamartias through neoplastic transformation of the astrocytic component.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Acta neuropathologica 86 (1993), S. 433-438 
    ISSN: 1432-0533
    Keywords: Temporal lobe epilepsy ; Hippocampal sclerosis ; Ganglioglioma ; Hamartoma ; Amygdalo-hippocampectomy
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract During the period between 1976 and 1990, 247 patients with pharmaco-resistant complex partial seizures and a documented unilateral epileptogenic area in the mediobasal temporal lobe underwent a selective amygdalo-hippocampectomy procedure at our institution. Biopsy specimens from 224 patients (91% of the total) were available for a retrospective histopathological and immunohistochemical review. The tissue specimens of 23 patients without evidence for a macroscopic lesion have been used for neurochemical studies and could not be evaluated histopathologically. The most common temporal lobe pathology were neoplasms in 126 patients, i.e. 56%. Tumor entities observed included 23 astrocytomas (18% of all tumors), 17 gangliogliomas (13%), 15 oligodendrogliomas (12%), 15 cases of glioblastoma multiforme (12%), 13 pilocytic astrocytomas (10%), 12 oligo-astrocytomas (10%), 11 anaplastic astrocytomas (9%) and 20 tumors of various other histologies. In 23 specimens (10%), small foci of oligodendroglia-like clear cells were found. The frequent association of these foci with low-grade gliomas or neural hamartomas raises the possibility that these structures may serve as precursor lesion for neuroepithelial tumors of the temporal lobe. In 98 cases, pathological changes of non-neoplastic origin were encountered. The most common diagnoses in this group included hippocampal gliosis/sclerosis (49 cases, 22%) and vascular malformations (20 cases, 9%). Hamartomas, i.e. focal accumulations of dysplastic neuro-glial cells were diagnosed in 14 patients (6%). In only four cases have we not been able to detect any microscopic pathology. These results indicate that a high proportion of pharmaco-therapy-resistent complex-partial seizures are caused by neoplasms of the temporal lobe, some of which appear to the strikingly overrepresented in this group of patients.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Acta neuropathologica 91 (1996), S. 376-384 
    ISSN: 1432-0533
    Keywords: Key words Epilepsy ; Immunohistochemistry ; Neurotransmitter ; Pathology ; Tumor
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Circumscribed cortical lesions are frequently encountered in patients with chronic focal epilepsies. However, the pathogenesis of seizures is poorly understood. To determine whether the perilesional cortex shows evidence for abnormal excitatory or inhibitory neurochemical activity, we immunohistochemically examined the distribution of the α1 subunit of the GABAA receptor (GABAR), the N-methyl-d-aspartate receptor subunit 1 (NR1), and glutamate decarboxylase (GAD) in 30 surgical specimens of neocortical epilepsy-associated lesions. These comprised 7 low-grade gliomas, 2 gangliogliomas, 2 dysembryoplastic neuroepithelial tumors, 4 glioneuronal malformations, 5 vascular malformations, and 10 glial or gliomesodermal scars. All specimens originated from patients with chronic pharmacoresistant epilepsy. In 73% of the cases there was a distinct difference in immunoreactivity for GABAR, GAD or NR1 between the perilesional zone and the normal cortex. With each of the markers there was reduced perilesional immunoreactivity in 30% of the specimens. Increased staining for GAD was seen in 17%, for GABAR in 7%, and for NR1 in 13% of the cases. The age at surgery, onset of seizures, epilepsy duration, and maximal seizure frequency did not differ significantly between patients with normal and those with altered perilesional immunoreactivity patterns. Although the perilesional changes for GAD, GABAR or NR1 were heterogeneous, they suggest a disturbed balance between excitatory and inhibitory synaptic transmission which may contribute to the pathogenesis of focal seizures.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-0533
    Keywords: Key words Epilepsy ; Immunohistochmistry ; Receptor ; Neurotransmitter ; Tumor
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Oligodendrogliomas and dysembryoplastic neuroepithelial tumors (DNT) are frequently associated with epilepsies and share the presence of oligodendroglia-like cells with small round nuclei and optically empty perinuclear halos. The two entities may be difficult to discriminate in small surgical specimens and the origin and differentiation of the oligodendroglia-like cells has been controversial. To better characterize and distinguish the two entities we examined 25 oligodendrogliomas and 16 DNT immunohistochemically for the presence of the proliferation–associated Ki-67 antigen and the following neural antigens: the α1 subunit of the GABAA receptor (GABAR), N-methyl-d-aspartate receptor subunit 1 (NR1), glutamate decarboxylase, neuronal nuclei antigen (NeuN), the embryonal form of the neural cell adhesion molecule (E-NCAM), synaptophysin, neurofilament protein (NFP), and glial fibrillary acidic protein (GFAP). Labeling indices for the Ki-67 antigens were generally less than 1% in both entities. In oligodendrogliomas, more than 50% of the tumors contained NR1- or E-NCAM-positive oligodendroglia-like cells, whereas NeuN-positive tumor cells were never observed. In DNT, NeuN- and NR1-positive tumor cells were present in 44% of the cases each; E-NCAM positivity was less frequent (19%). In both entities, immunoreactivity of oligodendroglia-like cells for GABAR and glutamate decarboxylase was rare and positivity for synaptophysin and neurofilament protein was absent. Some GFAP-positive tumor cells were present in approximately 70% of the cases in both entities. Except for the striking difference in NeuN positivity, the immunohistochemical profiles of oligodendroglia-like cells in DNT and oligodendrogliomas largely overlap and the differential diagnosis continues to rest mainly on conventional histopathological features. The NR1 positivity and the recently reported generation of action potentials in oligodendroglioma cells are consistent with neuronal differentiation and may contribute to the high epileptogenic potential of oligodendrogliomas.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-0533
    Keywords: Key words Stem cell ; Tumor ; Malformation ; Epilepsy ; Ganglioglioma
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract The etiology and pathogenesis of complex focal lesions associated with chronic, intractable epilepsy are largely unknown. Some data indicate that malformative changes of the central nervous system may preceed the development of gangliogliomas and other epilepsy-associated neoplasms. In the present immunhistochemical study, we have examined epilepsy-associated lesions for CD34, a stem cell marker transiently expressed during early neurulation. Surprisingly, most tissue samples from patients with chronic epilepsy (n = 262) revealed neural cells immunoreactive for CD34. Prominent immunoreactivity was detected in gangliogliomas (74%), low-grade astrocytomas (62%) and oligodendrogliomas (59%). Only 52% of non-neoplastic, malformative pathologies, such as glio-neuronal hamartias or hamartomas showed solitary or small clusters of CD34-immunoreactive cells. None of the adult control tissues (n = 22), none of the specimens obtained from the developing human brain (n = 44) and none of those tumor samples from patients without epilepsy (n = 63) contained CD34-immunoreactive neural cells. However, a malignant teratoma with microscopic features of early neural differentiation displayed a focal CD34-immunoreactive staining pattern. The majority of CD34-immunoreactive cells co-localized with S-100 protein and a small subpopulation was also immunoreactive for neuronal antigens. CD34 may, thus, represent a valuable marker for the diagnostic evaluation of neoplastic and/or malformative pathological changes in epilepsy patients. The CD34 immunoreactivity of these lesions indicates an origin from dysplastic or atypically differentiated neural precursors. Further studies may elucidate the functional significance of CD34 expression during the pathogenesis of epilepsy-related focal lesions as well as during neurogenesis.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1432-0533
    Keywords: Key words Expression ; NF1 ; Tumor ; Brain ; Neurofibroma
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract The close association of neurofibromatosis type 1 (NF1) with gliomas raises the question of whether the NF1 gene may be involved in the pathogenesis of sporadic astrocytic brain tumors. However, no frequent mutations within NF1 have been described in these tumors. Recent data on a limited series of gliomas indicate that NF1 expression may even be increased, thereby questioning the role of NF1 as a tumor suppressor in astrocytomas. In the present study, we examined the expression of NF1 in a series of 96 tumors including astrocytomas, meningiomas and plexiform neurofibromas. NF1 RNA transcription levels were compared to those of the reference genes B2M, ACTB and GAPD. The expression of OMGP, which is interposed in the NF1 gene, served as an additional control. NF1 expression did not significantly diverge among different malignancy stages of astrocytomas. As expected, the plexiform neurofibromas showed only very low NF1 expression. A striking finding was the highly variable expression of those genes selected to serve as references. While B2M and ACTB exhibited comparable levels of expression within different grades of astrocytomas and meningiomas, GAPD showed an inverse pattern in these tumors. In conclusion, NF1 expression is strongly reduced in NF1-associated plexiform neurofibromas but not in astrocytic tumors. The significant differences between B2M, ACTB and GAPD transcript levels brings into question the common practice of defining gene expression as a ratio between the transcripts of interest and those of these reference genes.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...