Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0568
    Keywords: Autonomic nervous system ; Adrenergic nerves ; Pelvic viscera ; Gastrointestinal tract
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The adrenergic innervation of the pelvic viscera was examined by the fluorescence histochemical technique, applied to tissue from untreated guinea-pigs and from guinea-pigs in which nerve pathways had been interrupted at operation. It was found that adrenergic neurons in the inferior mesenteric ganglia give rise to axons which run in the colonic nerves and end in the myenteric and submucous plexuses and around the arteries of the distal colon. In the rectum, part of the innervation of the myenteric plexus and all of the innervation of the submucous plexus comes from the inferior mesenteric ganglia. The rest of the adrenergic innervation of the myenteric plexus comes from the posterior pelvic ganglia or the sacral sympathetic chains. The innervation of the blood vessels of the rectum is from the posterior pelvic ganglia. Adrenergic nerves run from the sacral sympathetic chains and pass via nerves accompanying the rectal arteries to the internal anal sphincter. Other adrenergic fibres to the internal anal sphincter either arise in, or pass through, the posterior pelvic plexuses. The anal accessory muscle is innervated by adrenergic axons arising in the posterior pelvic plexuses. Adrenergic nerves which run in the pudendal nerves, probably from the sacral sympathetic chains, innervate the erectile tissue of the penis.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Anatomy and embryology 140 (1973), S. 109-128 
    ISSN: 1432-0568
    Keywords: Autonomic nervous system ; Gastrointestinal tract ; Adrenergic nerves ; Anal sphincter
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The anatomy and the adrenergic innervation of the rectum, internal anal sphincter and of accessory structures are described for the guinea-pig. The distribution of adrenergic nerves was examined using the fluorescence histochemical technique applied to both sections and whole mount preparations. The longitudinal and circular muscle of the rectum and the muscularis mucosae are all supplied by adrenergic nerve terminals. The density of the adrenergic innervation of the muscularis externa increases towards the anal sphincter. There is a very dense innervation of the internal anal sphincter, of the anal accessory muscles and of the corrugator ani. Non-fluorescent neurons in the ganglia of the myenteric plexus are supplied by adrenergic terminals. The ganglia become smaller and sparser towards the internal anal sphincter and non-ganglionated nerve strands containing adrenergic axons run from the plexus to the sphincter muscle. Adrenergic fibers innervate two interconnected ganglionated plexuses in the submucosa. Very few adrenergic nerve cells were found in the myenteric plexus and they were not found at all in the submucosa. The extrinsic arteries and veins of the pelvic region are heavily innervated by adrenergic nerves. Within the gut wall the arteries are densely innervated but there is little or no innervation of the veins.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-0878
    Keywords: NADPH diaphorase ; Immunohistochemistry ; Gastrointestinal tract ; Nitric oxide ; Histochemistry ; Guinea-pig
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract The distribution and abundance of nitric oxide synthase (NOS)-containing neurons and their terminals in the gastrointestinal tract of the guinea-pig were examined in detail using NADPH diaphorase histochemistry and NOS immunohistochemistry. NOS-containing cell bodies were found in the myenteric plexus throughout the gastrointestinal tract and in the submucous plexus of the stomach, colon and rectum. NOS-containing neurons comprised between 12% (in the duodenum) and 54% (in the esophagus) of total myenteric neurons. In the ileum, NOS neurons represented 19% of total myenteric neurons. Most of the NOS neurons throughout the gastrointestinal tract possessed lamellar dendrites and a single axon. NOS-containing terminals were abundant in the circular muscle, including that of the sphincters, but were rare in the longitudinal muscle, except for the taeniae of the caecum. The muscularis mucosae of the esophagus, stomach, colon and rectum received a medium to dense innervation by NOS terminals. Within myenteric ganglia, NOS-containing terminals were extremely sparse in the esophagus, stomach and duodenum, common in the ileum and distal colon and extremely dense in the proximal colon and rectum. The submucous plexus in the ileum and large intestine contained a sparse plexus of NOS-containing terminals. NOS terminals were not observed in the mucosa of any region. We conclude that throughout the gastrointestinal tract of the guinea-pig, NOS neurons are inhibitory motor neurons to the circular muscle; in the ileum and large intestine, NOS neurons may also function as interneurons.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Cell & tissue research 113 (1971), S. 67-82 
    ISSN: 1432-0878
    Keywords: Gastrointestinal tract ; Vascular innervation ; Adrenergic nerves ; Fluorescence histochemistry
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary The fluorescence histochemical method has been used to investigate the adrenergic innervation of the vessels of the gastrointestinal tract. Both stretch preparations and sections of blood vessels taken from cats, guinea-pigs, rabbits and rats were examined. A dense innervation of the major mesenteric arteries and their branches was found. Most of the nerve fibres are at the adventitio-medial border, but a few fibres penetrate the mediae of some large arteries. The innervation of the arterial branches in the gut wall is also dense, particularly in the submucosa. Generally, adrenergic nerves do not accompany capillaries. Arterio-venous shunts are apparently without any specialised adrenergic innervation. The veins of the gut wall are very sparsely supplied by adrenergic nerves but, except in the cat, as the veins increase in size towards the hepatic portal vein their density of innervation also increases. The hepatic portal vein is heavily innervated, most of the nerves being at the outer limit of the circular muscle. The innervation of the vessels of the gastrointestinal tract is correlated with their responses to the stimulation of sympathetic nerves.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Cell & tissue research 120 (1971), S. 346-363 
    ISSN: 1432-0878
    Keywords: Gastrointestinal tract ; Adrenergic nerves ; Enteric ganglia ; Sympathetic denervation ; Fluorescence histochemistry
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary The fluorescence histochemical method has been used to examine the adrenergic innervation of the proximal colon of the guinea-pig. Previous investigations have shown that the adrenergic fibres of the gastrointestinal tract arise from extrinsic ganglia. However, in this work it is shown that adrenergic nerve cells are found in the myenteric plexus of the proximal colon and that these cells provide varicose terminals about ganglion cells in the nodes of the plexus. About 75% of the nodes of the myenteric plexus in the proximal colon contain adrenergic cells. A few cells are also observed along the internodal strands. The cells have a cytoplasmic fluorescence, which is of different intensity in different cells, but there is no fluorescence of the nucleus. Processes can be traced from most cells and in some cases these are seen to become varicose. Interruption of extrinsic nerve pathways to the intestine causes a disappearance of the fluorescence reaction of the adrenergic terminals in the ileum, most of the distal colon and in the submucosal and perivascular plexuses of the proximal colon. In contrast, about 60% of the adrenergic terminals in the myenteric plexus of the proximal colon survive extrinsic denervation. From cell counts, it is estimated there are about 10000 adrenergic cells in the proximal colon.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Cell & tissue research 120 (1971), S. 364-385 
    ISSN: 1432-0878
    Keywords: Gastrointestinal tract ; Adrenergic neurones ; Adrenergic mechanisms ; Fluorescence histochemistry
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary In the present work, the effects of drugs on the storage, uptake and synthesis of catecholamines in intrinsic and extrinsic adrenergic neurones of the guinea-pig intestine are compared, using the fluorescence histochemical technique for localising catecholamines. In respect to the properties examined in this work, the intrinsic adrenergic neurones of the proximal colon of the guinea-pig were found to be qualitatively similar to adrenergic neurones of the sympathetic chains: the intrinsic cells and their terminals are depleted by reserpine or guanethidine; they concentrate and retain catecholamines and this uptake is blocked by desmethylimipramine or phenoxybenzamine; after depletion by reserpine, the fluorescence can be restored by the dopamine and noradrenaline precursor, dopa and this restoration is prevented by blocking the decarboxylation of dopa to dopamine. However, there are clear quantitative differences: the terminals of intrinsic neurones are less susceptible than are extrinsic neurones to depletion by reserpine, guanethidine or 6-hydroxydopamine; the intrinsic neurones more readily retain noradrenaline after reserpinisation. It is suggested that quantitative differences between extrinsic and intrinsic neurones of the intestine could involve a difference in the activity of monoamine oxidase.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Cell & tissue research 280 (1995), S. 549-560 
    ISSN: 1432-0878
    Keywords: Key words: Enteric nervous system ; Immunocytochemistry ; Calretinin ; Calbindin ; Bombesin ; Small intestine ; Guinea-pig
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract. Light- and electron-microscopic studies were used to investigate connections between specific subgroups of neurons in the myenteric plexus of the guinea-pig small intestine. Inputs to two classes of calretinin-immunoreactive (IR) nerve cells, longitudinal muscle motor neurons and ascending interneurons, were examined. Inputs from calbindin-IR primary sensory neurons and from three classes of descending interneurons were studied. Electron-microscopic analysis showed that calbindin-IR axons formed two types of inputs, synapses and close contacts, on calretinin-IR neurons. About 40% of inputs to the longitudinal muscle motor neurons and 70% to ascending interneurons were calbindin-IR. Approximately 50% of longitudinal muscle motor neurons were surrounded by bombesin-IR dense pericellular baskets and 40% by closely apposed varicosities. At the electron-microscope level, the bombesin-IR varicosities were found to form synapses and close contacts with the motor neurons. Dense pericellular baskets with bombesin-IR surrounded 36% of all ascending interneurons, and a further 17% had closely apposed varicosities. Somatostatin- and 5-HT-IR descending interneurons provided no dense pericellular baskets to calretinin-IR nerve cells. Thus, calretinin-IR, longitudinal muscle motor neurons and ascending interneurons receive direct synaptic inputs from intrinsic primary sensory neurons and from non-cholinergic, bombesin-IR, descending interneurons.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Cell & tissue research 271 (1993), S. 333-339 
    ISSN: 1432-0878
    Keywords: Enteric nervous system ; Prevertebral ganglia ; Retrograde tracing ; Calbindin ; Vasoactive intestinal peptide (VIP) ; Intestine ; Guinea-pig
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract Retrograde tracing, using Fast Blue dye, was employed to determine the distribution of enteric nerve cells that project to the superior mesenteric and inferior mesenteric ganglia of the guinea-pig. Retrogradely labelled neurons were found in the myenteric but not submucous ganglia. When the superior mesenteric ganglion was injected, labelled neurons were found in low frequencies (less than 5 nerve cell bodies/cm2) in the duodenum, jejunum, ileum, caecum and proximal colon. The distal colon was analysed in five segments of equal length (1–5; oral to anal). Segment 1 had about 4 labelled nerve cells/cm2, whereas segments 2 to 5 displayed an average of about 25 nerve cells/cm2. The rectum contained about 36 labelled neurons/cm2. After injection of the inferior mesenteric ganglia with Fast Blue, no labelled neurons were found in the duodenum, jejunum, ileum or caecum. No labelled cells were observed in the gallbladder. A small number of labelled cells occurred in the proximal colon and in segment 1 of the distal colon. The frequency of labelled cells increased markedly in the more anal regions of the distal colon, and reached a peak in the rectum (138 cells/cm2). Both nerve lesions and immersion of the cut nerve in Fast Blue solution showed that the superior mesenteric nerve carries the axons of neurons located in the middle distal colon to the superior mesenteric ganglion. Almost half of the neurons in the rectum that project to the inferior mesenteric ganglia do so via the hypogastric nerves. Of neurons that projected to the inferior or superior mesenteric ganglia from the colon or rectum, similar proportions (about 75–80%) showed immunoreactivity for calbindin or VIP. For each of the prevertebral ganglia (coeliac, superior mesenteric and inferior mesenteric) the great majority of peripheral inputs arise from the large intestine.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1432-0878
    Keywords: Calbindin ; Enteric nervous system ; Intestine, small ; Sensory neurons ; Guinea-pig
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary The distribution of nerve cells with immunoreactivity for the calcium-binding protein, calbindin, has been studied in the small intestine of the guinea-pig, and the projections of these neurons have been analysed by tracing their processes and by examining the consequences of nerve lesions. The immunoreactive neurons were numerous in the myenteric ganglia; there were 3500±100 reactive nerve cells per cm2 of undistended intestine, which is 30% of all nerve cells. In contrast, reactive nerve cells were extremely rare in submucous ganglia. The myenteric nerve cells were oval in outline and gave rise to several long processes; this morphology corresponds to Dogiel's type-II classification. Processes from the cell bodies were traced through the circular muscle in perforating nerve fibre bundles. Other processes ran circumferentially in the myenteric plexus. Removal of the myenteric plexus, allowing time for subsequent fibre degeneration, showed that reactive nerve fibres in the submucous ganglia and mucosa came from the myenteric cell bodies. Operations to sever longitudinal or circumferential pathways in the myenteric plexus indicated that most reactive nerve terminals in myenteric ganglia arise from myenteric cell bodies whose processes run circumferentially for 1.5 mm, on average. It is deduced that the calbindin-reactive neurons are multipolar sensory neurons, with the sensitive processes in the mucosa and with other processes innervating neurons of the myenteric plexus.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Springer
    Cell & tissue research 269 (1992), S. 119-132 
    ISSN: 1432-0878
    Keywords: Enteric nervous system ; Coeliac ganglion ; Retrograde tracing ; Calbindin ; Vasoactive intestinal peptide ; Guinea-pig
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary The digestive tract of the guinea-pig, from the esophagus to the rectum, was examined in detail to determine the distribution and relative abundances of neurons in these organs that project to the coeliac ganglion and the routes by which their axons reach the ganglion. A retrogradely transported neuronal marker, Fast Blue, was injected into the coeliac ganglion. The esophagus, stomach, gallbladder, pancreas, duodenum, small intestine, caecum, proximal colon, distal colon and rectum were analysed for labelled neurons. Retrogradely labelled neurons were found only in the myenteric plexus of these organs, and in the pancreas. No labelled neurons were found in the gallbladder or the fundus of the stomach, or in the submucous plexus of any region. A small number of labelled neurons was found in the gastric antrum. An increasing density of labelled neurons was found along the duodenum. Similarly, an increasing density of labelled neurons was found from proximal to distal along the jejuno-ileum. However, the greates densities of labelled neurons were in the large intestine. many labelled neurons were found in the caecum, including a high density underneath its taeniae. An increasing density of labelled neurons was found along the length of the proximal colon, and labelled neurons were found in the distal colon and rectum. In total, more labelled cell bodies occurred in the large intestine than in the small intestine. The routes taken by the axons of viscerofugal neurons were ascertained by lesioning the nerve bundles which accompany vessels supplying regions of the digestive tract. Viscerofugal neurons of the caecum project to the coeliac ganglion via the ileocaeco-colic nerves; neurons in the proximal colon project to the ganglion via the right colic nerves, and neurons in the distal colon project to the ganglion via the mid colic and intermesenteric nerves. Neurons in the rectum project to the coeliac ganglion via the intermesenteric nerves. These nerves (except for the intermesenterics) all join nerve bundles from the small intestine that follow the superior mesenteric artery. All viscerofugal neurons of the caecum were calbindin-immunoreactive (calb-IR) and 94% were immunoreactive for vasoactive intestinal peptide (VIP-IR). In the proximal colon, 49% of labelled neurons were calb-IR and 85% were VIP-IR. In the distal colon, 80% of labelled neurons were calb-IR and 71% were VIP-IR.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...