Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 118 (1978), S. 199-206 
    ISSN: 1432-072X
    Keywords: E. coli K-12 ; Galactonate ; 2-Oxo-3-deoxygalactonate ; Genetic mapping
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract 1. Escherichia coli K-12 mutants unable to grow on d-galactonate have been isolated and found to be defective in either galactonate dehydratase, 2-oxo-3-deoxygalactonate 6-phosphate aldolase or devoid of both of these enzymes and of 2-oxo-3-deoxygalactonate kinase. 2. 2-Oxo-3-deoxygalactonate kinase and 2-oxo-3-deoxygalactonate 6-phosphate aldolase are still induced by galactonate in mutants lacking galactonate dehydratase, suggesting that galactonate rather than a catabolic product of galactonate is the inducer of the galactonate catabolic enzymes. Synthesis of the enzymes is subject to glucose catabolite repression. 3. Mutants defective in 2-oxo-3-deoxygalactonate 6-phosphate aldolase accumulate 2-oxo-3-deoxygalactonate 6-phosphate when exposed to galactonate and this compound causes general growth inhibition. 4. Secondary mutants that no longer show this inhibition fail to make 2-oxo-3-deoxygalactonate 6-phosphate due to additional defects in galactonate transport, galactonate dehydratase, 2-oxo-3-deoxygalactonate kinase or a putative promoter mutation that prevents formation of these enzymes. 5. A spontaneous mutant capable of growth on 2-oxo-3-deoxygalactonate has been isolated. It has two genetically distinct mutations. One permits constitutive formation of the galactonate catabolic enzymes and the other allows the uptake of 2-oxo-3-deoxygalactonate. Neither mutation on its own permitted growth on 2-oxo-3-deoxygalactonate. 6. Genes specifying the various galactonate catabolic enzymes have been located at min 81.7 on the E. coli K-12 linkage map and probably constitute an operon. The gene sequence in this region was shown to by: pyrE uhp dgo dnaA.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 132 (1982), S. 270-275 
    ISSN: 1432-072X
    Keywords: Escherichia coli ; Succinate semialdehyde dehydrogenase ; Aromatic catabolism ; Hydroxyphenylacetate ; Genetic mapping
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Escherichia coli mutants, unable to grown on 4-hydroxyphenylacetate, have been isolated and found to be defective in the NAD-dependent succinate semialdehyde dehydrogenase. When the mutants are grown with 4-aminobutyrate as sole nitrogen source an NAD-dependent succinate semialdehyde dehydrogenase seen in the parental strain is absent but, as in the parental strain, an NADP-dependent enzyme is induced. Growth of the mutants is inhibited by 4-hydroxyphenylacetate due to the accumulation of succinate semialdehyde. The mutants are more sensitive to inhibition by exogenous succinate semialdehyde than is the parental strain. Secondary mutants able to grow in the presence of 4-hydroxyphenylacetate but still unable to use it as sole carbon source were defective in early steps of 4-hydroxyphenylacetate catabolism and so did not form succinate semialdehyde from 4-hydroxyphenylacetate. The gene encoding the NAD-dependent succinate semialdehyde dehydrogenase of Escherichia coli K-12 was located at min 34.1 on the genetic map.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...