Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-072X
    Keywords: Interspecies hydrogen transfer ; Interspecies formate transfer ; Alanine ; Serine ; Glycine fermentation ; Selenium ; Glycine reductase ; Sarcosine reduction ; Betaine reduction ; Eubacterium acidaminophilum
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract An obligately anaerobic, rod-shaped bacterium was isolated on alanine in co-culture with H2-scavenging Desulfovibrio and obtained in pure culture with glycine as sole fermentation substrate. The isolated strain, al-2, was motile by a polar to subpolar flagellum and stained Gram-positive. The guanine plus cytosine content of the DNA was 44.0 mol%. Strain al-2 grew in defined, reduced glycine media supplemented with biotin. The pure culture fermented 4 mol glycine to 3 mol acetate, 4 mol ammonia and 2 mol CO2. Under optimum conditions (34°C, pH 7.3), the doubling time on glycine was 60 min and the molar growth yield 7.6 g cell dry mass. Serine was fermented to acetate, ethanol, CO2, H2 and ammonia. In addition, betaine, sarcosine or creatine served as substrates for growth and acetate production if H2, formate or e.g. valine were added as H-donors. In pure culture on alanine under N2, strain al-2 grew very poorly and produced H2 up to a partial pressure of 3.6 kPa (0.035 atm). Desulfovibrio species, Methanospirillum hungatei and Acetobacterium woodii served as H2-scavengers that allowed good syntrophic growth on alanine. The co-cultures also grew on aspartate, leucine, valine or malate. Alanine and aspartate were stoichiometrically degraded to acetate and ammonia, whereas the reducing equivalents were recovered as H2S, CH4 or newly synthetized acetate, respectively. Growth of strain al-2 in co-culture with the hydrogenase-negative, formate-utilizing Desulfovibrio baarsii indicated that a syntrophy was also possible by interspecies formate transfer. Growth on glycine, or on betaine, sarcosine or creatine (plus H-donors) depended strictly on the addition of selenite (≥0.1 μM); selenite was not required for fermentation of serine, or for degradation of alanine, aspartate or valine by the co-cultures. Cell-free extracts of glycine-grown cells contained active glycine reductase, glycine decarboxylase and reversible methyl viologen-dependent formate dehydrogenase in addition to the other enzymes necessary for an oxidation to CO2. In all reactions NADP was the preferred H-carrier. Both formate and glycine could be synthesized from bicarbonate. Serine-grown cells did not contain serine hydroxymethyl transferase but serine dehydratase and other enzymes commonly involved in pyruvate metabolism to acetate, CO2 and H2. The enzymes involved in glycine metabolism were repressed during growth on serine. By its morphology and physiology, strain al-2 did not resemble described amino acid-degrading species. Therefore, the new isolate is proposed as type strain of a new species, Eubacterium acidaminophilum.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Archives of gynecology and obstetrics 217 (1974), S. 377-382 
    ISSN: 1432-0711
    Keywords: Candida ; Candida and Squamous Epithelium ; Ultrastructural Investigation ; Antimycotic Therapy
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Description / Table of Contents: Zusammenfassung Die Sproßpilze dringen im infizierten Gewebe mehrere Zellagen tief vor. Zumindest in oberflächlichen Zellagen ist ein aktives Eindringen in einzelne Wirtszellen möglich. Im Inneren morphologisch intakter Epithelzellen kann eine Vermehrung der Erreger erfolgen. Darüber hinaus können die Pilze die Epithelzelle verlassen, ohne eine sichtbare Zellwandperforation zu hinterlassen. Einzelne Epithelzellen beherbergten bis zu 30 Sproßzellen.
    Notes: Summary This investigation demonstrates the behavior of pathogenic fungi on squamous epithelium by normal and electron microscopical means. The aim was to gather more information about the relationship of fungi and hosttissue. It could be shown that the infectious agent penetrates several layers of the infected tissue. Active penetration into individual hostcells is possible, at least in superficial layers. Inside of morphologically intact epithelial cells reproduction of the fungi is possible. In addition fungi can leave epithelial cells without visible perforation of the cell membrane. Individual epithelial cells host up to 30 cells of fungi. The inter and intraepithelial position of pathogenic fungi is emphasized with regard to antimycotic therapy.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...