Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0878
    Keywords: Substance P ; Calcitonin gene-related peptide ; Dynorphin ; Cholecystokinin ; Neuropeptide coexistence ; Sensory neurons ; Immunohistochemistry ; Guinea pig
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary The co-existence of immunoreactivities to substance P (SP), calcitonin gene-related peptide (CGRP), cholecystokinin (CCK) and dynorphin (DYN) in neurons of the dorsal root ganglion (DRG) of guinea-pigs has been investigated with a double-labelling immunofluorescence procedure. Four main populations of neurons could be identified that contained different combinations of these peptides and had distinctive peripheral projections: (1) Neurons that contained immunoreactivity to SP, CGRP, CCK and DYN were distributed mainly to the skin. (2) Neurons with immunoreactivity to SP, CGPR and CCK, but not DYN, were distributed mainly to the small blood vessels of skeletal muscles. (3) Neurons with immunoreactivity to SP, CGRP and DYN, but not CCK, were distributed mainly to pelvic viscera and airways. (4) Neurons containing immunoreactivity to SP and CGRP, but not CCK and DYN, were distributed mainly to the heart, systemic blood vessels, blood vessels of the abdominal viscera, airways and sympathetic ganglia. Other small populations of DRG neurons containing SP, CGRP or CCK alone also were detected. Perikarya containing these combinations of neuropeptides were not found in autonomic ganglia. The peripheral axons of neurons containing immunoreactivity to at least SP and CGRP were damaged by chronic treatment with capsaicin. However, some sensory neurons containing CCK alone were not affected morphologically by capsaicin. These results clearly show that individual DRG neurons can contain many different neuropeptides. Furthermore, the combination of neuropeptides found in any particular neuron is related to its peripheral projection.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0878
    Keywords: Neuropeptides ; Vascular innervation ; Immunohistochemistry ; Small intestine ; Guinea pig
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary The neuropeptide content of nerve fibers associated with submucosal arteries in the small intestine of guinea pigs was studied in whole-mount preparations using immunohistochemical methods. Tissues were obtained from normal animals or animals in which the small intestine had been extrinsically denervated. In normal animals, submucosal arteries are innervated by extrinsic sensory nerve fibers which contain both substance P and calcitonin gene-related peptide, and by sympathetic noradrenergic nerve fibers. In preparations obtained from animals 5–9 days after denervation, nerve fibers which contained substance P without detectable calcitonin gene-related peptide were associated with a few submucosal arteries. Nerve fibers which contained vasoactive intestinal peptide were also associated with some arteries. By 42–48 days after extrinsic denervation, substance P-containing fibers (without calcitonin gene-related peptide) and vasoactive intestinal peptide-containing fibers were associated with nearly every blood vessel. The extrinsic sympathetic nerve fibers did not regenerate during the course of this study. The nerve fibers associated with submucosal arteries in denervated tissues were not sensitive to capsaicin treatment. The alteration in the innervation of submucosal arterioles that follows extrinsic denervation of the gut may reflect either an increase in the neuropeptide content of the fibers, synthesis of a new peptide, or an increase in the number of fibers as a result of axonal sprouting.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Cell & tissue research 280 (1995), S. 549-560 
    ISSN: 1432-0878
    Keywords: Key words: Enteric nervous system ; Immunocytochemistry ; Calretinin ; Calbindin ; Bombesin ; Small intestine ; Guinea-pig
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract. Light- and electron-microscopic studies were used to investigate connections between specific subgroups of neurons in the myenteric plexus of the guinea-pig small intestine. Inputs to two classes of calretinin-immunoreactive (IR) nerve cells, longitudinal muscle motor neurons and ascending interneurons, were examined. Inputs from calbindin-IR primary sensory neurons and from three classes of descending interneurons were studied. Electron-microscopic analysis showed that calbindin-IR axons formed two types of inputs, synapses and close contacts, on calretinin-IR neurons. About 40% of inputs to the longitudinal muscle motor neurons and 70% to ascending interneurons were calbindin-IR. Approximately 50% of longitudinal muscle motor neurons were surrounded by bombesin-IR dense pericellular baskets and 40% by closely apposed varicosities. At the electron-microscope level, the bombesin-IR varicosities were found to form synapses and close contacts with the motor neurons. Dense pericellular baskets with bombesin-IR surrounded 36% of all ascending interneurons, and a further 17% had closely apposed varicosities. Somatostatin- and 5-HT-IR descending interneurons provided no dense pericellular baskets to calretinin-IR nerve cells. Thus, calretinin-IR, longitudinal muscle motor neurons and ascending interneurons receive direct synaptic inputs from intrinsic primary sensory neurons and from non-cholinergic, bombesin-IR, descending interneurons.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-0878
    Keywords: Enteric nervous system ; Intestine, small ; Neurons, types ; Myenteric plexus ; Intracellular dye injection (Lucifer yellow) ; Guinea pig
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary The shapes of myenteric neurons in the guineapig small intestine were determined after injecting living neurons with the dye Lucifer yellow via a microelectrode. The cells were fixed and the distribution of Lucifer yellow rendered permanent by an immunohistochemical method. Each of 204 nerve cells was examined in whole-mount preparations of the myenteric plexus and drawn using a camera lucida at 1250 x magnification. Four cell shapes were distinguished: (1) neurons with several long processes corresponding to type II of Dogiel; (2) neurons with a single long process and lamellar dendrites corresponding to type I of Dogiel; (3) neurons with numerous filamentous dendrites; and (4) small neurons with few processes. About 15% of the neurons could not be placed into these classes or into any single class. The type II neurons (39% of the sample) had generally smooth somata and up to 7 (average 3.3) long processes, most of which ran circumferentially. Dogiel type I neurons (34% of sampled neurons) had characteristic lamellar dendrites, i.e., broad dendrites that were flattened in the plane of the plexus. The filamentous neurons (7% of the sample), had, on average, 14 fine processes up to about 50 μm in length. Small neurons with smooth outlines and a few fine processes made up 5% of the neurons encountered. We conclude that myenteric neurons that have been injected with dye can be separated into morphologically distinct classes and that the different morphological classes probably correspond to different functional groupings of neurons.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Cell & tissue research 271 (1993), S. 333-339 
    ISSN: 1432-0878
    Keywords: Enteric nervous system ; Prevertebral ganglia ; Retrograde tracing ; Calbindin ; Vasoactive intestinal peptide (VIP) ; Intestine ; Guinea-pig
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract Retrograde tracing, using Fast Blue dye, was employed to determine the distribution of enteric nerve cells that project to the superior mesenteric and inferior mesenteric ganglia of the guinea-pig. Retrogradely labelled neurons were found in the myenteric but not submucous ganglia. When the superior mesenteric ganglion was injected, labelled neurons were found in low frequencies (less than 5 nerve cell bodies/cm2) in the duodenum, jejunum, ileum, caecum and proximal colon. The distal colon was analysed in five segments of equal length (1–5; oral to anal). Segment 1 had about 4 labelled nerve cells/cm2, whereas segments 2 to 5 displayed an average of about 25 nerve cells/cm2. The rectum contained about 36 labelled neurons/cm2. After injection of the inferior mesenteric ganglia with Fast Blue, no labelled neurons were found in the duodenum, jejunum, ileum or caecum. No labelled cells were observed in the gallbladder. A small number of labelled cells occurred in the proximal colon and in segment 1 of the distal colon. The frequency of labelled cells increased markedly in the more anal regions of the distal colon, and reached a peak in the rectum (138 cells/cm2). Both nerve lesions and immersion of the cut nerve in Fast Blue solution showed that the superior mesenteric nerve carries the axons of neurons located in the middle distal colon to the superior mesenteric ganglion. Almost half of the neurons in the rectum that project to the inferior mesenteric ganglia do so via the hypogastric nerves. Of neurons that projected to the inferior or superior mesenteric ganglia from the colon or rectum, similar proportions (about 75–80%) showed immunoreactivity for calbindin or VIP. For each of the prevertebral ganglia (coeliac, superior mesenteric and inferior mesenteric) the great majority of peripheral inputs arise from the large intestine.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1432-0878
    Keywords: Calbindin ; Enteric nervous system ; Intestine, small ; Sensory neurons ; Guinea-pig
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary The distribution of nerve cells with immunoreactivity for the calcium-binding protein, calbindin, has been studied in the small intestine of the guinea-pig, and the projections of these neurons have been analysed by tracing their processes and by examining the consequences of nerve lesions. The immunoreactive neurons were numerous in the myenteric ganglia; there were 3500±100 reactive nerve cells per cm2 of undistended intestine, which is 30% of all nerve cells. In contrast, reactive nerve cells were extremely rare in submucous ganglia. The myenteric nerve cells were oval in outline and gave rise to several long processes; this morphology corresponds to Dogiel's type-II classification. Processes from the cell bodies were traced through the circular muscle in perforating nerve fibre bundles. Other processes ran circumferentially in the myenteric plexus. Removal of the myenteric plexus, allowing time for subsequent fibre degeneration, showed that reactive nerve fibres in the submucous ganglia and mucosa came from the myenteric cell bodies. Operations to sever longitudinal or circumferential pathways in the myenteric plexus indicated that most reactive nerve terminals in myenteric ganglia arise from myenteric cell bodies whose processes run circumferentially for 1.5 mm, on average. It is deduced that the calbindin-reactive neurons are multipolar sensory neurons, with the sensitive processes in the mucosa and with other processes innervating neurons of the myenteric plexus.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1432-0878
    Keywords: Gastrin ; Gastrin-releasing peptide ; Bombesin ; Stomach ; Autonomic innervation ; Immunohistochemistry ; Guinea pig ; Rat ; Dog ; Man
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary The relationship between bombesin-like immunoreactive (bombesin-LI) nerve fibres and gastrin-LI G-cells was examined in gastric antral mucosa from guineapig, rat, dog and man using a double-labelling fluorescence immunohistochemical technique. The greatest density of bombesin-LI nerve fibres was found within the basal mucosa in all species and the density of innervation decreased towards the luminal surface. Most G-cells were in a band occupying approximately the middle third of the mucosa. The proportion of G-cells found within a distance of 2 μm from bombesin-LI nerve fibres was low in all species (6% in the guinea-pig, 22% in the rat, 14% in the dog, and 9% in the human). It is proposed that the neuropeptide released from bombesin-LI antral mucosal nerve fibres traverses distances of greater than several μm to reach the target G-cells. This may be achieved by passage through the mucosal microcirculation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Cell & tissue research 269 (1992), S. 119-132 
    ISSN: 1432-0878
    Keywords: Enteric nervous system ; Coeliac ganglion ; Retrograde tracing ; Calbindin ; Vasoactive intestinal peptide ; Guinea-pig
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary The digestive tract of the guinea-pig, from the esophagus to the rectum, was examined in detail to determine the distribution and relative abundances of neurons in these organs that project to the coeliac ganglion and the routes by which their axons reach the ganglion. A retrogradely transported neuronal marker, Fast Blue, was injected into the coeliac ganglion. The esophagus, stomach, gallbladder, pancreas, duodenum, small intestine, caecum, proximal colon, distal colon and rectum were analysed for labelled neurons. Retrogradely labelled neurons were found only in the myenteric plexus of these organs, and in the pancreas. No labelled neurons were found in the gallbladder or the fundus of the stomach, or in the submucous plexus of any region. A small number of labelled neurons was found in the gastric antrum. An increasing density of labelled neurons was found along the duodenum. Similarly, an increasing density of labelled neurons was found from proximal to distal along the jejuno-ileum. However, the greates densities of labelled neurons were in the large intestine. many labelled neurons were found in the caecum, including a high density underneath its taeniae. An increasing density of labelled neurons was found along the length of the proximal colon, and labelled neurons were found in the distal colon and rectum. In total, more labelled cell bodies occurred in the large intestine than in the small intestine. The routes taken by the axons of viscerofugal neurons were ascertained by lesioning the nerve bundles which accompany vessels supplying regions of the digestive tract. Viscerofugal neurons of the caecum project to the coeliac ganglion via the ileocaeco-colic nerves; neurons in the proximal colon project to the ganglion via the right colic nerves, and neurons in the distal colon project to the ganglion via the mid colic and intermesenteric nerves. Neurons in the rectum project to the coeliac ganglion via the intermesenteric nerves. These nerves (except for the intermesenterics) all join nerve bundles from the small intestine that follow the superior mesenteric artery. All viscerofugal neurons of the caecum were calbindin-immunoreactive (calb-IR) and 94% were immunoreactive for vasoactive intestinal peptide (VIP-IR). In the proximal colon, 49% of labelled neurons were calb-IR and 85% were VIP-IR. In the distal colon, 80% of labelled neurons were calb-IR and 71% were VIP-IR.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Springer
    Cell & tissue research 280 (1995), S. 549-560 
    ISSN: 1432-0878
    Keywords: Enteric nervous system ; Immunocytochemistry ; Calretinin ; Calbindin ; Bombesin ; Small intestine ; Guinea-pig
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract Light- and electron-microscopic studies were used to investigate connections between specific subgroups of neurons in the myenteric plexus of the guineapig small intestine. Inputs to two classes of calretinin-immunoreactive (IR) nerve cells, longitudinal muscle motor neurons and ascending interneurons, were examined. Inputs from calbindin-IR primary sensory neurons and from three classes of descending interneurons were studied. Electron-microscopic analysis showed that calbindin-IR axons formed two types of inputs, synapses and close contacts, on calretinin-IR neurons. About 40% of inputs to the longitudinal muscle motor neurons and 70% to ascending interneurons were calbindin-IR. Approximately 50% of longitudinal muscle motor neurons were surrounded by bombesin-IR dense pericellular baskets and 40% by closely apposed varicosities. At the electron-microscope level, the bombesin-IR varicosities were found to form synapses and close contacts with the motor neurons. Dense pericellular baskets with bombesin-IR surrounded 36% of all ascending interneurons, and a further 17% had closely apposed varicosities. Somatostatin-and 5-HT-IR descending interneurons provided no dense pericellular baskets to calretinin-IR nerve cells. Thus, calretinin-IR, longitudinal muscle motor neurons and ascending interneurons receive direct synaptic inputs from intrinsic primary sensory neurons and from non-cholinergic, bombesin-IR, descending interneurons.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...