Bibliothek

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Enteric nervous system Intestinal reflexes Nitric oxide synthase Calbindin Primary afferent neurons Guinea pig  (1)
  • Histochemistry  (1)
Materialart
Erscheinungszeitraum
Schlagwörter
  • 1
    Digitale Medien
    Digitale Medien
    Springer
    Cell & tissue research 277 (1994), S. 139-149 
    ISSN: 1432-0878
    Schlagwort(e): NADPH diaphorase ; Immunohistochemistry ; Gastrointestinal tract ; Nitric oxide ; Histochemistry ; Guinea-pig
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Biologie , Medizin
    Notizen: Abstract The distribution and abundance of nitric oxide synthase (NOS)-containing neurons and their terminals in the gastrointestinal tract of the guinea-pig were examined in detail using NADPH diaphorase histochemistry and NOS immunohistochemistry. NOS-containing cell bodies were found in the myenteric plexus throughout the gastrointestinal tract and in the submucous plexus of the stomach, colon and rectum. NOS-containing neurons comprised between 12% (in the duodenum) and 54% (in the esophagus) of total myenteric neurons. In the ileum, NOS neurons represented 19% of total myenteric neurons. Most of the NOS neurons throughout the gastrointestinal tract possessed lamellar dendrites and a single axon. NOS-containing terminals were abundant in the circular muscle, including that of the sphincters, but were rare in the longitudinal muscle, except for the taeniae of the caecum. The muscularis mucosae of the esophagus, stomach, colon and rectum received a medium to dense innervation by NOS terminals. Within myenteric ganglia, NOS-containing terminals were extremely sparse in the esophagus, stomach and duodenum, common in the ileum and distal colon and extremely dense in the proximal colon and rectum. The submucous plexus in the ileum and large intestine contained a sparse plexus of NOS-containing terminals. NOS terminals were not observed in the mucosa of any region. We conclude that throughout the gastrointestinal tract of the guinea-pig, NOS neurons are inhibitory motor neurons to the circular muscle; in the ileum and large intestine, NOS neurons may also function as interneurons.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    ISSN: 1432-0878
    Schlagwort(e): Enteric nervous system Intestinal reflexes Nitric oxide synthase Calbindin Primary afferent neurons Guinea pig
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Biologie , Medizin
    Notizen: Abstract. Nitric oxide synthase (NOS) immunoreactivity occurs in two groups of neurons in the guinea pig small intestine: descending interneurons that are also immunoreactive for choline acetyltransferase (ChAT), and inhibitory motor neurons that lack ChAT immunoreactivity. Interneurons that are involved in local reflexes would be expected to have inputs from intrinsic primary afferent (sensory) neurons, most of which are calbindin-immunoreactive. We examined this possibility using triple staining for NOS, ChAT and calbindin immunoreactivity and investigated the relationships between calbindin-immunoreactive varicosities and the cell bodies of NOS-immunoreactive neurons, using high-resolution confocal microscopy and electron microscopy. By confocal microscopy, we found that the cell bodies of ChAT/NOS interneurons received 84±23 (mean ± SD) direct appositions from calbindin-immunoreactive varicosities and that the cell bodies of NOS-inhibitory motor neurons received 82±20 appositions. Electron-microscopic examination of the relations of 265-calbindin-immunoreactive varicosities, at distances within the resolution of the confocal microscope (300 nm), to 30 NOS-immunoreactive nerve cells indicated that 84% formed close contacts or synapses and 16% were separated from neurons by thin glial cell processes. Thus, each NOS-immunoreactive nerve cell receives about 70 synaptic inputs or close contacts from the calbindin-immunoreactive varicosities of intrinsic primary afferent neurons. It is concluded that there are monosynaptic reflex connections in which intrinsic primary afferent neurons synapse directly with motor neurons and di- or poly-synaptic reflexes in which ChAT- and NOS-immunoreactive neurons are interneurons, interposed between intrinsic primary afferent neurons and NOS-inhibitory neurons.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...